×

Approximating sparse quadratic programs. (English) Zbl 07782074

Summary: Given a matrix \(A \in \mathbb{R}^{n \times n}\), we consider the problem of maximizing \(x^T Ax\) subject to the constraint \(x \in \{-1, 1\}^n\). This problem, called MaxQP by Charikar and Wirth [FOCS’04], generalizes MaxCut and has natural applications in data clustering and in the study of disordered magnetic phases of matter. Charikar and Wirth showed that the problem admits an \(\Omega(1 / \lg n)\) approximation via semidefinite programming, and Alon, Makarychev, Makarychev, and Naor [STOC’05] showed that the same approach yields an \(\Omega(1)\) approximation when \(A\) corresponds to a graph of bounded chromatic number. Both these results rely on solving the semidefinite relaxation of MaxQP, whose currently best running time is \(\tilde{O}(n^{1.5} \cdot \min \{N, n^{1.5}\})\), where \(N\) is the number of nonzero entries in \(A\) and \(\tilde{O}\) ignores polylogarithmic factors.
In this sequel, we abandon the semidefinite approach and design purely combinatorial approximation algorithms for special cases of MaxQP where \(A\) is sparse (i.e., has \(O(n)\) nonzero entries). Our algorithms are superior to the semidefinite approach in terms of running time, yet are still competitive in terms of their approximation guarantees. More specifically, we show that:
MaxQP admits a \((1/2\Delta)\)-approximation in \(O(n \lg n)\) time, where \(\Delta = O(1)\) is the maximum degree of the corresponding graph.
Unit MaxQP, where \(A \in \{- 1, 0, 1\}^{n \times n}\), admits a \((1/2d)\)-approximation in \(O(n)\) time when the corresponding graph is \(d\)-degenerate, and a \((1/3\delta)\)-approximation in \(O(n^{1.5})\) time when the corresponding graph has \(\delta n\) edges for \(\delta = O(1)\).
MaxQP admits a \((1 - \varepsilon)\)-approximation in \(O(n)\) time when the corresponding graph and each of its minors have bounded local treewidth.
Unit MaxQP admits a \((1 - \varepsilon)\)-approximation in \(O(n^2)\) time for \(H\)-minor free graphs.

MSC:

68Qxx Theory of computing

References:

[1] Charikar, M.; Wirth, A., Maximizing quadratic programs: extending Grothendieck’s inequality, 54-60
[2] Goemans, M. X.; Williamson, D. P., Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM, 6, 1115-1145 (1995) · Zbl 0885.68088
[3] Khot, S.; O’Donnell, R., SDP gaps and UGC-hardness for max-cut-gain. Theory Comput., 1, 83-117 (2009) · Zbl 1213.68313
[4] Bansal, N.; Blum, A.; Chawla, S., Correlation clustering. Mach. Learn., 1-3, 89-113 (2004) · Zbl 1089.68085
[5] Charikar, M.; Guruswami, V.; Wirth, A., Clustering with qualitative information. J. Comput. Syst. Sci., 3, 360-383 (2005) · Zbl 1094.68075
[6] Demaine, E. D.; Emanuel, D.; Fiat, A.; Immorlica, N., Correlation clustering in general weighted graphs. Theor. Comput. Sci., 2-3, 172-187 (2006) · Zbl 1099.68074
[7] Swamy, C., Correlation clustering: maximizing agreements via semidefinite programming, 526-527 · Zbl 1318.68197
[8] Barahona, F., On the computational complexity of Ising spin glass models. J. Phys. A, Math. Gen., 3241-3253 (1982)
[9] Talagrand, M., Spin Glasses: A Challenge for Mathematicians. A Series of Modern Surveys in Mathematics (2003), Springer · Zbl 1033.82002
[10] Bieche, I.; Maynard, R.; Rammal, R.; Uhry, J.-P., On the ground states of the frustration model of a spin glass by a matching method of graph theory. J. Phys. A, Math. Gen., 2553-2576 (1980)
[11] Barahona, F.; Maynard, R.; Rammal, R.; Uhry, J.-P., Morphology of ground states of two-dimensional frustration model. J. Phys. A, Math. Gen., 673-699 (1982)
[12] Barahona, F., The max-cut problem on graphs not contractible to \(K_5\). Oper. Res. Lett., 3, 107-111 (1983) · Zbl 0525.90094
[13] Alon, N.; Naor, A., Approximating the cut-norm via Grothendieck’s inequality. SIAM J. Comput., 4, 787-803 (2006) · Zbl 1096.68163
[14] Alon, N.; Makarychev, K.; Makarychev, Y.; Naor, A., Quadratic forms on graphs, 486-493 · Zbl 1192.05168
[15] Nesterov, Y., Global quadratic optimization via conic relaxation (1998), Université Catholique de Louvain, Center for Operations Research and Econometrics (CORE), CORE Discussion Papers 1998060
[16] Arora, S.; Hazan, E.; Kale, S., Fast algorithms for approximate semidefinite programming using the multiplicative weights update method, 339-348
[17] Håstad, J., Some optimal inapproximability results. J. ACM, 4, 798-859 (2001) · Zbl 1127.68405
[18] Arora, S.; Berger, E.; Hazan, E.; Kindler, G.; Safra, M., On non-approximability for quadratic programs, 206-215
[19] Eppstein, D., Diameter and treewidth in minor-closed graph families. Algorithmica, 3, 275-291 (2000) · Zbl 0963.05128
[20] Grohe, M., Local tree-width, excluded minors, and approximation algorithms. Combinatorica, 4, 613-632 (2003) · Zbl 1089.05503
[21] Demaine, E. D.; Hajiaghayi, M. T.; Kawarabayashi, K., Algorithmic graph minor theory: decomposition, approximation, and coloring, 637-646
[22] Robertson, N.; Seymour, P. D., Graph minors. XVI. Excluding a non-planar graph. J. Comb. Theory, Ser. B, 1, 43-76 (2003) · Zbl 1023.05040
[23] Diestel, R., Graph Theory. Graduate Texts in Mathematics (2016), Springer
[24] Erdős, P.; Gyárfás, A.; Kohayakawa, Y., The size of the largest bipartite subgraphs. Discrete Math., 1-3, 267-271 (1997) · Zbl 0888.05035
[25] Micali, S.; Vazirani, V. V., An \(O(\sqrt{ | V |} | E |)\) algorithm for finding maximum matching in general graphs, 17-27
[26] Baker, B. S., Approximation algorithms for NP-complete problems on planar graphs. J. ACM, 1, 153-180 (1994) · Zbl 0807.68067
[27] Eppstein, D., Subgraph isomorphism in planar graphs and related problems. J. Graph Algorithms Appl., 3, 1-27 (1999) · Zbl 0949.05055
[28] Kostochka, A. V., Lower bound of the Hadwiger number of graphs by their average degree. Combinatorica, 4, 307-316 (1984) · Zbl 0555.05030
[29] Grohe, M.; Kawarabayashi, K.; Reed, B. A., A simple algorithm for the graph minor decomposition—logic meets structural graph theory, 414-431 · Zbl 1423.05159
[30] Kawarabayashi, K.; Wollan, P., A simpler algorithm and shorter proof for the graph minor decomposition, 451-458 · Zbl 1288.05257
[31] Kloks, T., Treewidth, Computations and Approximations. Lecture Notes in Computer Science (1994), Springer · Zbl 0825.68144
[32] Bodlaender, H. L.; Drange, P. G.; Dregi, M. S.; Fomin, F. V.; Lokshtanov, D.; Pilipczuk, M., A \(c^k n 5\)-approximation algorithm for treewidth. SIAM J. Comput., 2, 317-378 (2016) · Zbl 1333.05282
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.