×

Regularity of electromagnetic fields in convex domains. (English. Russian original) Zbl 1360.35265

J. Math. Sci., New York 210, No. 6, 793-813 (2015); translation from Zap. Nauchn. Semin. POMI 425, 55-85 (2014).
Suppose that \(\Omega\) is a bounded domain in \(\mathbb{R}^3\), and \(\varepsilon, \mu\) are bounded measurable \(\mathbb{R}^{3\times 3}\)-valued functions, being symmetric and positive definite. Consider the following ‘weak’ Sobolev spaces \[ \begin{aligned} F(\Omega,s)&= \{u\in L_2(\Omega,\mathbb{C}^3): \nabla\times u, \nabla\cdot(su)\in L_2\},\;\;\;s=\varepsilon\;\;\text{or}\;\;\mu,\\ F(\Omega,\varepsilon,\tau)&= \{E\in F(\Omega,\varepsilon): E_\tau|_{\partial\Omega}=0\},\\ F(\Omega,\mu,\nu)&= \{H\in F(\Omega,\mu): (\mu H)_\nu|_{\partial\Omega}=0\}, \end{aligned} \] where \(\nu\) and \(\tau\), respectively, signify the unit normal and tangential vectors to \(\partial\Omega\), and the following ‘strong’ Sobolev spaces \[ \begin{aligned} W_2^1(\Omega,\tau)&= \{u\in W_2^1(\Omega,\mathbb{C}^3): u_\tau|_{\partial\Omega}=0\},\\ W_2^1(\Omega,\mu,\tau)&= \{v\in W_2^1(\Omega,\mathbb{C}^3): (\mu v)_\nu|_{\partial\Omega}=0\}. \end{aligned} \] Under the assumptions that \(\varepsilon, \mu\in W_3^1(\Omega)\), and \(\Omega\) is locally \((W_3^2\cap W_\infty^1)\)-diffeomorphic to a convex one, the authors show that the ‘weak’ and ‘strong’ Sobolev spaces coincide. Furthermore, they show that the Maxwell operator \(\mathcal{M}\) defined by \[ \mathcal{M}\begin{pmatrix} E\\ H \end{pmatrix}=\begin{pmatrix} i\varepsilon^{-1}\nabla\times H\\ -i\mu^{-1} \nabla\times E \end{pmatrix} \] coincide on the ‘weak’ and ‘strong’ Sobolev spaces.

MSC:

35Q60 PDEs in connection with optics and electromagnetic theory
35B65 Smoothness and regularity of solutions to PDEs
78A02 Foundations in optics and electromagnetic theory

References:

[1] G. S. Alberti and Y. Capdeboscq, “Elliptic regularity theory applied to time harmonic anisotropic Maxwell’s equations with less than Lipschitz complex coefficients,” SIAM J. Math. Anal., 46, No. 1, 998-1016 (2014). · Zbl 1294.35156 · doi:10.1137/130929539
[2] M. Sh. Birman and M. Z. Solomyak, “The Maxwell operator in domains with a nonsmooth boundary,” Sib. Mat. Zh., 28, No. 1, 23-36 (1987). · Zbl 0655.35067 · doi:10.1007/BF00970204
[3] M. Sh. Birman and M. Z. Solomyak, “Construction in a piecewise-smooth domain of a function of the class from the value of the conormal derivative,” Zap. Nauchn. Semin. LOMI, 163, 17-28 (1987). · Zbl 0677.46042
[4] M. Sh. Birman and M. Z. Solomyak, “The selfadjoint Maxwell operator in arbitrary domains,” Algebra Analiz, 1, No. 1, 96-110 (1989). · Zbl 0733.35099
[5] M. Sh. Birman and M. Z. Solomyak, “Principal singularities of the electric component of an electromagnetic field in regions with screens,” Algebra Analiz, 5, No. 1, 143-159 (1993). · Zbl 0804.35127
[6] Yu. D. Burago and V. A. Zalgaller, Introduction to Riemannian Geometry [in Russian], Nauka, St. Petersburg (1994). · Zbl 0814.53001
[7] M. N. Demchenko and N. D. Filonov, “Spectral asymptotics of the Maxwell operator on Lipschitz manifolds with boundary,” Amer. Math. Soc. Transl., 225, No. 2, 73-90 (2008). · Zbl 1230.35076
[8] N. D. Filonov, “Principal singularities of the magnetic component of an electromagnetic field in domains with screens,” Algebra Analiz, 8, No. 3, 212-236 (1996). · Zbl 0884.35155
[9] N. D. Filonov, “Principal singularities of the magnetic field component in resonators with a boundary of a given class of smoothness,” Algebra Analiz, 9, No. 2, 241-255 (1997).
[10] K. O. Friedrichs, “Differential forms on Riemannian manifolds,” Comm. Pure Appl. Math., 8, 551-590 (1955). · Zbl 0066.07504 · doi:10.1002/cpa.3160080408
[11] M. P. Gaffney, “Hilbert space methods in the theory of harmonic integrals,” Trans. Amer. Math. Soc., 78, No. 2, 426-444 (1955). · Zbl 0064.34303 · doi:10.1090/S0002-9947-1955-0068888-1
[12] J. Gobert, “Sur une in´egalit´e de coercivit´e,” J. Math. Anal. Appl., 36, No. 3, 518-528 (1971). · Zbl 0221.35016 · doi:10.1016/0022-247X(71)90035-7
[13] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Advanced Publ. Progr., Boston-London-Melbourne (1985). · Zbl 0695.35060
[14] S. Kaizu and F. Kikuchi, “An imbedding theorem for a Hilbert space appearing in electromagnetics,” Sci. Papers College Arts Sci., University Tokyo, 36, 81-89 (1986). · Zbl 0653.46026
[15] O. A. Ladyzhenskaya and N. N. Uraltseva, Linear and Quasilinear Elliptic Equations, Academic Press (1968). · Zbl 0164.13002
[16] R. Leis, “Zur Theorie elektromagnetischer Schwingungen in anisotropen inhomogenen Medien,” Math. Z., 106, No. 3, 213-224 (1968). · doi:10.1007/BF01110135
[17] V. G. Maz’ya and T. O. Shaposhnikova, Theory of Multipliers in Spaces of Differentiable Functions, Pitman (1985). · Zbl 0645.46031
[18] M. Mitrea, “Dirichlet integrals and Gaffney-Friedrichs inequalities in convex domain,” Forum Math., 13, No. 4, 531-567 (2001). · Zbl 0980.35040 · doi:10.1515/form.2001.021
[19] R. Picard, “An elementary proof for a compact imbedding result in generalized electromagnetic theory,” Math. Z., 187, 151-164 (1984). · Zbl 0527.58038 · doi:10.1007/BF01161700
[20] J. Saranen, “On an inequality of Friedriechs,” Math. Scand., 51, 310-322 (1982). · Zbl 0524.35100
[21] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J. (1970). · Zbl 0207.13501
[22] C. Weber, “Regularity theorems for Maxwell’s equations,” Math. Meth. Appl. Sci., 3, 523-536 (1981). · Zbl 0477.35020 · doi:10.1002/mma.1670030137
[23] N. Weck, “Maxwell’s boundary value problem on Riemannian manifolds with nonsmooth boundaries,” J. Math. Anal. Appl., 46, 410-437 (1974). · Zbl 0281.35022 · doi:10.1016/0022-247X(74)90250-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.