×

Winners don’t take all: Characterizing the competition for links on the web. (English) Zbl 0999.68011

Summary: As a whole, the World Wide Web displays a striking “rich get richer” behavior, with a relatively small number of sites receiving a disproportionately large share of hyperlink references and traffic. However, hidden in this skewed global distribution, we discover a qualitatively different and considerably less biased link distribution among subcategories of pages – for example, among all university homepages or all newspaper homepages. Although the connectivity distribution over the entire web is close to a pure power law, we find that the distribution within specific categories is typically unimodal on a log scale, with the location of the mode, and thus the extent of the rich get richer phenomenon, varying across different categories. Similar distributions occur in many other naturally occurring networks, including research paper citations, movie actor collaborations, and United States power grid connections. A simple generative model, incorporating a mixture of preferential and uniform attachment, quantifies the degree to which the rich nodes grow richer, and how new (and poorly connected) nodes can compete. The model accurately accounts for the true connectivity distributions of category-specific web pages, the web as a whole, and other social networks.

MSC:

68M10 Network design and communication in computer systems

References:

[1] Lawrence, Nature; Physical Science (London) 400 (6740) pp 107– (1999) · doi:10.1038/21987
[2] COMPUT NETW ISDN SYS 30 pp 551– (1998) · doi:10.1016/S0169-7552(98)00066-X
[3] Q J ELECTR COMMERCE 1 pp 5– (2000)
[4] COMPUT NETW ISDN SYS 27 pp 165– (1994) · doi:10.1016/0169-7552(94)90130-9
[5] Roemer, Nature; Physical Science (London) 401 (6749) pp 131– (1999)
[6] WORLD WIDE WEB J SPEC ISSUE CHARACTER PERFORM EVAL 2 pp 15– (1999)
[7] COMPUT NETW ISDN SYS 28 pp 963– (1996) · doi:10.1016/0169-7552(96)00064-5
[8] Science 280 pp 95– (1994)
[9] Barabasi, Science 286 (5439) pp 509– (1999) · Zbl 1226.05223 · doi:10.1126/science.286.5439.509
[10] COMPUT NETW 33 pp 309– (2000) · doi:10.1016/S1389-1286(00)00083-9
[11] COMPUT NETW 31 pp 1481– (1999) · doi:10.1016/S1389-1286(99)00040-7
[12] 1 pp 12– (1995) · Zbl 0875.60002 · doi:10.1002/cplx.6130010104
[13] Science 214 pp 1441– (1988)
[14] Jeong, Nature; Physical Science (London) 407 (6804) pp 651– (2000) · doi:10.1038/35036627
[15] Watts, Nature; Physical Science (London) 393 (6684) pp 440– (1998) · Zbl 1368.05139 · doi:10.1038/30918
[16] 272 pp 173– (1999) · doi:10.1016/S0378-4371(99)00291-5
[17] Adamic, Science 287 (5461) pp 2115a– (2000) · doi:10.1126/science.287.5461.2115a
[18] Dorogovtsev, Physical Review Letters 85 (21) pp 4633– (2000) · doi:10.1103/PhysRevLett.85.4633
[19] PHYS REV E 64 pp 66110– (2001) · doi:10.1103/PhysRevE.64.066110
[20] Albert, Physical Review Letters 85 (24) pp 5234– (2000) · doi:10.1103/PhysRevLett.85.5234
[21] SIMON, Biometrika 42 (3-4) pp 425– (1955) · Zbl 0066.11201 · doi:10.1093/biomet/42.3-4.425
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.