×

An efficient algorithm for the submatrix constraint of the matrix equation \(A_1 X_1 B_1+A_2 X_2 B_2+{\cdots}+A_l X_l B_l =C\). (English) Zbl 1255.65076

Summary: Matrix \(A=(a_{ij}) \in \mathbb{R}^{n{\times}n}\) is said to be bisymmetric if \(a_{ij} =a_{ji} =a_{n+1-j, n+1-i}\) for all \(1\leq i, j \leq n\). In this paper, an efficient algorithm is presented for minimizing \(\|A_1 X_1 B_1+A_2 X_2 B_2+\cdots+A_l X_l B_l-C\|\), where \(\|\cdot\|\) is the Frobenius norm and \(X_i \in \mathbb{R}^{n_{i}\times n_{i}} (i=1, 2, \dots, l)\) is bisymmetric with a specified central principal submatrix \([x_{ij}]_{r\leq i, j\leq n_{i}-r}\). The algorithm produces suitable \([X_1, X_2, \dots , X_l]\) such that \(\|A_1 X_1 B_1+A_2 X_2 B_2+\cdots+A_l X_l B_l-C \|=\)min within finite iteration steps in the absence of roundoff errors. The results of given numerical experiments show that the algorithm has fast convergence rate.

MSC:

65F10 Iterative numerical methods for linear systems
65F30 Other matrix algorithms (MSC2010)
Full Text: DOI

References:

[1] DOI: 10.1137/S0895479803434185 · Zbl 1079.65043 · doi:10.1137/S0895479803434185
[2] DOI: 10.1016/0024-3795(80)90189-5 · Zbl 0437.15005 · doi:10.1016/0024-3795(80)90189-5
[3] DOI: 10.1016/0024-3795(76)90101-4 · Zbl 0326.15007 · doi:10.1016/0024-3795(76)90101-4
[4] DOI: 10.1109/TCOM.1976.1093391 · Zbl 0351.94001 · doi:10.1109/TCOM.1976.1093391
[5] DOI: 10.1016/0024-3795(87)90104-2 · Zbl 0612.15003 · doi:10.1016/0024-3795(87)90104-2
[6] DOI: 10.1007/BF01598746 · Zbl 0674.15005 · doi:10.1007/BF01598746
[7] DOI: 10.1016/0024-3795(84)90069-7 · Zbl 0541.15004 · doi:10.1016/0024-3795(84)90069-7
[8] Gersho A., BSTJ 48 pp 55– (1969)
[9] DOI: 10.1016/j.cam.2005.10.021 · Zbl 1103.15008 · doi:10.1016/j.cam.2005.10.021
[10] DOI: 10.1137/1.9781611970944 · doi:10.1137/1.9781611970944
[11] DOI: 10.1002/nla.530 · Zbl 1199.65141 · doi:10.1002/nla.530
[12] DOI: 10.1137/040615791 · Zbl 1096.15004 · doi:10.1137/040615791
[13] DOI: 10.1016/S0024-3795(00)00232-9 · Zbl 0971.65022 · doi:10.1016/S0024-3795(00)00232-9
[14] DOI: 10.1016/j.laa.2007.05.034 · Zbl 1123.15009 · doi:10.1016/j.laa.2007.05.034
[15] Shim S.-Y., SIAM. J. Matrix Anal. Appl. 3 pp 8002– (2003)
[16] Wang R. S., Functional Analysis and Optimization Theory (2003)
[17] DOI: 10.1016/j.laa.2003.12.039 · Zbl 1058.15015 · doi:10.1016/j.laa.2003.12.039
[18] DOI: 10.1016/j.amc.2007.05.021 · Zbl 1149.15011 · doi:10.1016/j.amc.2007.05.021
[19] DOI: 10.1016/j.amc.2006.06.012 · Zbl 1108.15014 · doi:10.1016/j.amc.2006.06.012
[20] DOI: 10.2307/2323222 · Zbl 0619.15021 · doi:10.2307/2323222
[21] DOI: 10.1016/S0024-3795(97)10099-4 · Zbl 0933.15024 · doi:10.1016/S0024-3795(97)10099-4
[22] DOI: 10.1016/j.laa.2004.02.035 · Zbl 1069.15013 · doi:10.1016/j.laa.2004.02.035
[23] DOI: 10.1016/j.laa.2007.08.019 · Zbl 1133.15016 · doi:10.1016/j.laa.2007.08.019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.