×

Ulam’s type stability of higher order nonlinear delay differential equations via integral inequality of Grönwall-Bellman-Bihari’s type. (English) Zbl 1428.34087

Summary: In this paper, we prove the Hyers-Ulam stability and the Hyers-Ulam-Rassias stability of a class of higher order nonlinear delay differential equations with multiple bounded variable delays on a compact interval. Result of existence and uniqueness of solution is obtained by fixed point approach. Meanwhile, for the first time, integral inequality of Grönwall-Bellman-Bihari’s type with delay is applied to prove the stability theorem which made our results more generalized and interesting.

MSC:

34K05 General theory of functional-differential equations
39B82 Stability, separation, extension, and related topics for functional equations
34D10 Perturbations of ordinary differential equations
Full Text: DOI

References:

[1] Aoki, T., On the stability of the linear transformation in banach spaces, J. Math. Soc. Japan, 2, 64-66 (1950) · Zbl 0040.35501
[2] Campbell, S. A.; Edwards, R.; van den Driessche, P., Delayed coupling between two neural network loops, SIAM J. Appl. Math., 65, 316-335 (2004) · Zbl 1072.92003
[3] Choi, G.; Jung, S., Invariance of hyers-ulam stability of linear differential equations and its applications, Adv. Differ. Equ., 2015 (2015) · Zbl 1351.34064
[4] Ciupe, S. M.; de Bivort, B. L.; Bortz, D. M.; Nelson, P. W., Estimates of kinetic parameters from HIV patient data during primary infection through the eyes of three different models, Math. Biosci., 200, 1-27 (2006) · Zbl 1086.92022
[5] Cooke, K.; Kuang, Y.; Li, B., Analyses of an antiviral immune response model with time delays, Can. Appl. Math. Q., 6, 321-354 (1998) · Zbl 0941.92015
[6] Huang, J.; Alqifiary, Q. H.; Li, Y., Superstability of differential equations with boundary conditions, Electron J. Differ. Equ., 2014 (2014) · Zbl 1310.34021
[7] Huang, J.; Jung, S.; Li, Y., On hyers-ulam stability of nonlinear differential equations, Bull. Korean Math. Soc., 52, 685-697 (2015) · Zbl 1370.34098
[8] Huang, J.; Li, Y., Hyers-ulam stability of linear functional differential equations, J. Math. Anal. Appl., 426, 1192-1200 (2015) · Zbl 1319.34120
[9] Huang, J.; Li, Y., Hyers-ulam stability of delay differential equations of first order, Math. Nachr., 289, 60-66 (2016) · Zbl 1339.34082
[10] Hyers, D. H., On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U. S. A., 27, 222-224 (1941) · Zbl 0061.26403
[11] Jiang, F.; Meng, F., Explicit bounds on some new nonlinear integral inequalities with delay, J. Comput. Appl. Math., 205, 479-486 (2007) · Zbl 1135.26015
[12] Jung, S., Hyers-ulam stability of linear differential equations of first order, Appl. Math. Lett., 17, 1135-1140 (2004) · Zbl 1061.34039
[13] Jung, S., A fixed point approach to the stability of differential equations \(y^\prime = f(x, y)\), Bull. Malays. Math. Sci. Soc., 33, 47-56 (2010) · Zbl 1184.26012
[14] Jung, S., Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis (2011), Springer: Springer New York · Zbl 1221.39038
[15] Jung, S.; Brzdȩk, J., Hyers-ulam stability of the delay equation \(y^\prime(t) = y(t - \tau)\), Abstr. Appl. Anal., 2010, 372176 (2010) · Zbl 1210.34108
[16] Kreyszig, R., Introduction to Functional Analysis with Applications (1989), Wiley: Wiley New York · Zbl 0706.46001
[17] Kuang, Y., Delay Differential Equations with Application in Population Dynamics (1993), Academic Press: Academic Press New York · Zbl 0777.34002
[18] Li, Y.; Shen, Y., Hyers-ulam stability of nonhomogeneous linear differential equations of second order, Int. J. Math. Math. Sci., 2009, 576852 (2009) · Zbl 1181.34014
[19] Li, T.; Zada, A., Connections between hyers-ulam stability and uniform exponential stability of discrete evolution families of bounded linear operators over banach spaces, Adv. Differ. Equ., 2016, 153 (2016) · Zbl 1419.39038
[20] Li, T.; Zada, A.; Faisal, S., Hyers-ulam stability of nth order linear differential equations, J. Nonlin. Sci. Appl., 9, 2070-2075 (2016) · Zbl 1337.34052
[21] Miura, T.; Miyajima, S.; Takahasi, S. E., A characterization of hyers-ulam stability of first order linear differential operators, J. Math. Anal. Appl., 286, 136-146 (2003) · Zbl 1045.47037
[22] Nelson, P. W.; Murray, J. D.; Perelson, A. S., A model of HIV-1 pathogenesis that includes an intracellular delay, Math. Biosci., 163, 201-215 (2000) · Zbl 0942.92017
[23] Obloza, M., Hyers stability of the linear differential equation, Rocznik Nauk.-Dydakt. Prace Mat., 13, 259-270 (1993) · Zbl 0964.34514
[24] Obloza, M., Connections between hyers and lyapunov stability of the ordinary differential equations, Rocznik Nauk. Dydakt. Prace Mat., 14, 141-146 (1997) · Zbl 1159.34332
[25] de Oliveira, E. C.; Sousa, J. V.C., Ulam-hyers-rassias stability for a class of fractional integrodifferential equations, Results Math., 73, 2018, 111-116 (2018) · Zbl 1401.45011
[26] Onitsuka, M., Hyers-ulam stability of first order linear differential equations of carathéodory type and its application, Appl. Math. Lett., 90, 61-68 (2019) · Zbl 1408.34041
[27] Otrocol, D.; Ilea, V., Ulam stability for a delay differential equation, Cent. Eur. J. Math., 11, 1296-1303 (2013) · Zbl 1275.34098
[28] Rassias, T. M., On the stability of the linear mapping in banach spaces, Proc. Am. Math. Soc., 72, 297-300 (1978) · Zbl 0398.47040
[29] Tunç, C.; Biçer, E., Hyers-ulam-rassias stability for a first order functional differential equation, J. Math. Fund. Sci., 47, 143-153 (2015)
[30] Ulam, S. M., A Collection of the Mathematical Problems (1960), Interscience: Interscience New York · Zbl 0086.24101
[31] Villasana, M.; Radunskaya, A., A delay differential equation model for tumor growth, J. Math. Bio., 47, 270-294 (2003) · Zbl 1023.92014
[32] Wang, J.; Feĉkan, M.; Zhou, Y., On the stability of first order impulsive evolution equations, Opuscula Math., 34, 639-657 (2014) · Zbl 1331.34126
[33] Wang, J.; Zada, A.; Ali, W., Ulam’s-type stability of first-order impulsive differential equations with variable delay in quasi-banach spaces, Int. J. Nonlin. Sci. Numer. Simul., 19, 553-560 (2018) · Zbl 1401.34091
[34] Zada, A.; Ali, W.; Farina, S., Hyers-ulam stability of nonlinear differential equations with fractional integrable impulses, Math. Meth. Appl. Sci., 40, 5502-5514 (2017) · Zbl 1387.34026
[35] Zada, A.; Faisal, S.; Li, Y., Hyers-ulam-rassias stability of nonlinear delay differential equations, J. Nonlin. Sci. Appl., 10, 504-510 (2017) · Zbl 1412.35032
[36] Zada, A.; Shah, O.; Shah, R., Hyers-ulam stability of non-autonomous systems in terms of boundedness of cauchy problems, Appl. Math. Comput., 271, 512-518 (2015) · Zbl 1410.39049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.