×

Population dynamics on random networks: simulations and analytical models. (English) Zbl 1188.91159

Summary: We study the phase diagram of the standard pair approximation equations for two different models in population dynamics, the susceptible-infective-recovered-susceptible model of infection spread and a predator-prey interaction model, on a network of homogeneous degree \(k\). These models have similar phase diagrams and represent two classes of systems for which noisy oscillations, still largely unexplained, are observed in nature. We show that for a certain range of the parameter k both models exhibit an oscillatory phase in a region of parameter space that corresponds to weak driving. This oscillatory phase, however, disappears when \(k\) is large. For \(k = 3, 4\), we compare the phase diagram of the standard pair approximation equations of both models with the results of simulations on regular random graphs of the same degree. We show that for parameter values in the oscillatory phase, and even for large system sizes, the simulations either die out or exhibit damped oscillations, depending on the initial conditions. We discuss this failure of the standard pair approximation model to capture even the qualitative behavior of the simulations on large regular random graphs and the relevance of the oscillatory phase in the pair approximation diagrams to explain the cycling behavior found in real populations.

MSC:

91B80 Applications of statistical and quantum mechanics to economics (econophysics)
92D25 Population dynamics (general)
05C82 Small world graphs, complex networks (graph-theoretic aspects)

References:

[1] J.D. Murray, Mathematical Biology I: An Introduction (Springer-Verlag, New York, 2002) · Zbl 1006.92001
[2] R.M. Anderson, R.M. May, Infectious Diseases of Humans: Dynamics and Control (Oxford University Press, Oxford, 1991)
[3] The Geometry of Ecological Interactions: Simplifying Spatial Complexity, edited by U. Dieckmann, R. Law, J.A.J. Metz (Cambridge University Press, Cambridge, 2000)
[4] M.J. Keeling, K.T.D. Eames, J. R. Soc. Interface 2, 295 (2005)
[5] H. Matsuda, N. Ogita, A. Sasaki, K. Sato, Prog. Theor. Phys. 88, 1035 (1992)
[6] S. Levin, R. Durrett, Phil. Trans. R. Soc. Lond. B 351, 1615 (1996)
[7] M.J. Keeling, D.A. Rand, A.J. Morris, Proc. R. Soc. Lond. B 264, 1149 (1997)
[8] M. van Baalen, in The Geometry of Ecological Interactions: Simplifying Spatial Complexity, edited by U. Dieckmann, R. Law, J.A.J. Metz (Cambridge University Press, Cambridge, 2000), p. 359
[9] G. Rozhnova, A. Nunes, Phys. Rev. E 79, 041922 (2009)
[10] D. A. Rand, in Advanced Ecological Theory: Principles and Applications, edited by J. McGlade (Blackwell Science, Oxford, 1999), p. 100
[11] A.J. Morris, Ph.D. dissertation, University of Warwick, Coventry, UK (1997)
[12] J. Benoit, A. Nunes, M.M. Telo da Gama, Eur. Phys. J. B 50, 177 (2006)
[13] G. Rozhnova, A. Nunes, in Complex Sciences: Complex 2009, Part I, LNICST 4, edited by J. Zhou (Springer Berlin Heidelberg, 2009), p. 792
[14] J. Joo, J.L. Lebowitz, Phys. Rev. E 70, 036114 (2004)
[15] J.E. Satulovsky, T. Tomé, Phys. Rev. E 49, 5073 (1994)
[16] T. Tomé, K.C. de Carvalho, J. Phys. A: Math. Theor. 40, 12901 (2007)
[17] Z. Nikoloski, N. Deo, L. Kucera, Complexus 3, 169 (2006)
[18] E. Volz, L.A. Meyers, Proc. R. Soc. B 274, 2925 (2007)
[19] G. Rozhnova, A. Nunes, Phys. Rev. E 80, 051915 (2009)
[20] C.T. Bauch, D.J.D. Earn, Proc. R. Soc. London, Ser. B 270, 1573 (2003)
[21] C.S. Elton, Voles, Mice and Lemmings: Problems in Population Dynamics (Clarendon Press, Oxford, 1942)
[22] C.B. Huffaker, Hilgardia 27, 343 (1958)
[23] J.O. Wolff, Ecological Monographs 50, 111 (1980)
[24] A. Lotka, J. Am. Chem. Soc. 42, 1595 (1920)
[25] V. Volterra, Leçons sur la Théorie Mathématique de la Lutte pour la Vie (Gauthier-Villars, Paris, 1931) · JFM 57.0466.02
[26] A. Lipowski, Phys. Rev. E 60, 5179 (1999)
[27] T. Antal, M. Droz, Phys. Rev. E 63, 056119 (2001)
[28] M. Mobilia, I.T. Georgiev, U.C. Täuber, J. Stat. Phys. 128, 447 (2007)
[29] M. Peltomäki, M. Rost, M. Alava, Phys. Rev. E 78, 050903(R) (2008)
[30] S. Boutin, Wildl. Res. 22, 89 (1995)
[31] A.B. Bortz, M.H. Kalos, J.L. Lebowitz, J. Comput. Phys. 17, 10 (1975)
[32] D.T. Gillespie, J. Comput. Phys. 22, 403 (1976)
[33] G. Szabó, A. Szolnoki, R. Izsák, J. Phys. A 37, 2599 (2004)
[34] A. Szolnoki, G. Szabó, Phys. Rev. E 70, 037102 (2004)
[35] E. Pugliese, C. Castellano, e-print [arXiv:0903.5489]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.