×

Recurrent epidemics in small world networks. (English) Zbl 1443.92185

Summary: The effect of spatial correlations on the spread of infectious diseases was investigated using a stochastic susceptible-infective-recovered (SIR) model on complex networks. It was found that in addition to the reduction of the effective transmission rate, through the screening of infectives, spatial correlations have another major effect through the enhancement of stochastic fluctuations, which may become considerably larger than in the homogeneously mixed stochastic model. As a consequence, in finite spatially structured populations significant differences from the solutions of deterministic models are to be expected, since sizes even larger than those found for homogeneously mixed stochastic models are required for the effects of fluctuations to be negligible. Furthermore, time series of the (unforced) model provide patterns of recurrent epidemics with slightly irregular periods and realistic amplitudes, suggesting that stochastic models together with complex networks of contacts may be sufficient to describe the long-term dynamics of some diseases. The spatial effects were analysed quantitatively by modelling measles and pertussis, using a susceptible-exposed-infective-recovered (SEIR) model. Both the period and the spatial coherence of the epidemic peaks of pertussis are well described by the unforced model for realistic values of the parameters.

MSC:

92D30 Epidemiology
05C82 Small world graphs, complex networks (graph-theoretic aspects)

References:

[1] Anderson, R. M.; May, R. M., The invasion, persistence and spread of infectious diseases within animal and plant communities, Philos. Trans. R. Soc. London Ser. B, 314, 533-570 (1986)
[2] Anderson, R. M.; May, R. M., Infectious Diseases of Humans, Dynamics and Control (1991), Oxford University Press: Oxford University Press Oxford
[3] Aparicio, J. P.; Solari, H. G., Sustained oscillations in stochastic systems, Math. Biosci., 169, 15-25 (2001) · Zbl 0977.92024
[4] Aron, J. L.; Schwartz, I. B., Seasonality and period-doubling bifurcations in an epidemic model, J. Theor. Biol., 110, 665-679 (1984)
[5] Bailey, N. T.J., The Mathematical Theory of Infectious Diseases (1975), Charles Griffin: Charles Griffin London · Zbl 0334.92024
[6] Bartlett, M. S., Measles periodicity and community size, J. R. Stat. Soc. Ser. A, 120, 48-70 (1957)
[7] Bolker, B., Chaos and complexity in measles models—a comparative numerical study, IMA J. Math. Appl. Med., 10, 83-95 (1993) · Zbl 0780.92021
[8] Bolker, B.; Grenfell, B. T., Space, persistence and dynamics of measles epidemics, Philos. Trans. R. Soc. London Ser. B, 348, 309-320 (1995)
[9] Dammer, S. M.; Hinrichsen, H., Epidemic spreading with immunization and mutations, Phys. Rev. E, 68, 016114 (2003)
[10] Dietz, K., Lect. Notes Biomath., 11, 1-15 (1976) · Zbl 0333.92014
[11] Dorogotsev, S. N.; Mendes, J. F., Evolution of Networks (2003), Oxford University Press: Oxford University Press Oxford · Zbl 1109.68537
[12] Earn, D. J.D.; Rohani, P.; Bolker, B. M.; Grenfell, B. T., A simple model for complex dynamical transitions in epidemics, Science, 287, 667-670 (2000)
[13] Finkenstaˇdt, B.; Grenfell, B., Empirical determinants of measles metapopulation dynamics in England and Wales, Proc. R. Soc. London Ser. B, 265, 211-220 (1998)
[14] Grassberger, P., On the critical behaviour of the general epidemic process and dynamical percolation, Math. Biosci., 63, 157-172 (1983) · Zbl 0531.92027
[15] Grenfell, B. T.; Bjornstad, O. N.; Kappey, J., Travelling waves and spatial hierarquies in measles epidemics, Nature, 414, 716-723 (2001)
[16] Hastings, M. B., Mean-field and anomalous behaviour on a small world network, Phys. Rev. Lett., 91, 098701 (2003)
[17] Hethcote, H. W., The mathematics of infectious diseases, SIAM Rev., 42, 599-653 (2000) · Zbl 0993.92033
[18] Johansen, A., A simple model of recurrent epidemics, J. Theor. Biol., 178, 45-51 (1996)
[19] Keeling, M. J., The effects of local spatial structure on epidemiological invasions, Proc. R. Soc. London Ser. B, 266, 859-867 (1999)
[20] Keeling, M. J.; Grenfell, B. T., Disease extinction and community sizemodeling the persistence of measles, Science, 275, 65-67 (1997)
[21] Keeling, M. J.; Grenfell, B. T., Understanding the persistence of measlesreconciling theory simulation and observation, Proc. R. Soc. London Ser. B, 269, 335-343 (2002)
[22] Kleczkowski, A.; Grenfell, B. T., Mean field type of equations for spread of epidemicsthe small world model, Physica A, 274, 355-360 (1999)
[23] Kuperman, M.; Abramson, G., Small world effect in an epidemiological model, Phys. Rev. Lett., 86, 2909-2912 (2001)
[24] Liljeros, F.; Edling, C. R.; Amaral, L. A.N.; Stanley, E.; Åberg, Y., The web of human sexual contacts, Nature, 411, 907-908 (2001)
[25] Lloyd, A. L., Estimating variability in models for recurrent epidemicsassessing the use of moment closure techniques, Theor. Pop. Biol., 65, 49-65 (2004) · Zbl 1105.92031
[26] Lloyd, A. L.; May, R. M., Spatial heterogeneity in epidemic models, J. Theor. Biol., 179, 1-11 (1996)
[27] May, R. M.; Lloyd, A. L., Infection dynamics on scale free networks, Phys. Rev. E, 64, 066112 (2001)
[28] Moore, C.; Newmann, M. E.J., Epidemics and percolation in small world networks, Phys. Rev. E, 61, 5678-5682 (2000)
[29] Moore, C.; Newmann, M. E.J., Exact solution of site and bond percolation on small world networks, Phys. Rev. E, 62, 7059-7064 (2000)
[30] Murray, J. D., Mathematical Biology, IISpatial Models and Biomedical Applications (2003), Springer: Springer Heidelberg · Zbl 1006.92002
[31] Nåsell, I., On the time to extinction in recurrent epidemics, J. R. Stat. Soc. Ser. B, 69, 309-330 (1999) · Zbl 0917.92023
[32] Pastor-Santorras, R.; Vespigniani, A., Epidemic spreading in scale free networks, Phys. Rev. Lett., 86, 3200-3203 (2001)
[33] Pastor-Santorras, R.; Vespigniani, A., Epidemic dynamics and endemic states in complex networks, Phys. Rev. E, 63, 066117 (2001)
[34] Rhodes, C. J.; Anderson, R. M., Persistence and dynamics in lattice models of epidemic spread, J. Theor. Biol., 180, 125-133 (1996)
[35] Rhodes, C. J.; Anderson, R. M., Power laws governing epidemics in small populations, Nature, 381, 600-602 (1996)
[36] Rohani, P.; Earn, D. J.D.; Grenfell, B. T., Opposite patterns of synchrony in sympatric disease metapopulations, Science, 286, 968-971 (1999)
[37] Rohani, P.; Keeling, M.; Grenfell, B., The interplay between determinism and stochasticity in childhood diseases, Am. Nat., 159, 469-481 (2002)
[38] Watts, D. J., Small Worlds (1999), Princeton University Press: Princeton University Press Princeton, NJ
[39] Watts, D. J.; Strogatz, S. H., Collective dynamics of ‘small-world’ networks, Nature, 393, 440-442 (1998) · Zbl 1368.05139
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.