×

Spreading dynamics on complex networks: a general stochastic approach. (English) Zbl 1301.93149

Summary: Dynamics on networks is considered from the perspective of Markov stochastic processes. We partially describe the state of the system through network motifs and infer any missing data using the available information. This versatile approach is especially well adapted for modelling spreading processes and/or population dynamics. In particular, the generality of our framework and the fact that its assumptions are explicitly stated suggests that it could be used as a common ground for comparing existing epidemics models too complex for direct comparison, such as agent-based computer simulations. We provide many examples for the special cases of susceptible-infectious-susceptible and susceptible-infectious-removed dynamics (e.g., epidemics propagation) and we observe multiple situations where accurate results may be obtained at low computational cost. Our perspective reveals a subtle balance between the complex requirements of a realistic model and its basic assumptions.

MSC:

93E03 Stochastic systems in control theory (general)
93A30 Mathematical modelling of systems (MSC2010)
05C82 Small world graphs, complex networks (graph-theoretic aspects)
60J28 Applications of continuous-time Markov processes on discrete state spaces
92D25 Population dynamics (general)
92D30 Epidemiology

Software:

gleamviz

References:

[1] Allard A, Noël PA, Dubé LJ, Pourbohloul B (2009) Heterogeneous bond percolation on multitype networks with an application to epidemic dynamics. Phys Rev E 79(036):113. doi:10.1103/PhysRevE.79.036113 · doi:10.1103/PhysRevE.79.036113
[2] Allard A, Hébert-Dufresne L, Noël PA, Marceau V, Dubé LJ (2012) Bond percolation on a class of correlated and clustered random graphs. J Phys A 45(405):005. doi:10.1088/1751-8113/45/40/405005 · Zbl 1252.82058 · doi:10.1088/1751-8113/45/40/405005
[3] Auchincloss AH, Diez Roux AV (2008) A new tool for epidemiology: the usefulness of dynamic-agent models in understanding place effects on health. Am J Epidemiol 168:1-8. doi:10.1093/aje/kwn118 · doi:10.1093/aje/kwn118
[4] Ball F, Neal P (2008) Network epidemic models with two levels of mixing. Math Biosci 212:69-87 · Zbl 1132.92020 · doi:10.1016/j.mbs.2008.01.001
[5] Bansal S, Grenfell BT, Meyers LA (2007) When individual behaviour matters: homogeneous and network models in epidemiology. J R Soc Interface 4:879-891. doi:10.1098/rsif.2007.1100 · doi:10.1098/rsif.2007.1100
[6] Barrat A, Barthélemy M, Vespignani A (2008) Dynamical processes on complex networks. Cambridge University Press, New York · Zbl 1198.90005 · doi:10.1017/CBO9780511791383
[7] Bascompte J, Stouffer DB (2009) The assembly and disassembly of ecological networks. Philos Trans R Soc Lond B 364:1781-1787. doi:10.1098/rstb.2008.0226 · doi:10.1098/rstb.2008.0226
[8] Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU (2006) Complex networks: structure and dynamics. Phys Rep 424:175-308. doi:10.1016/j.physrep.2005.10.009 · Zbl 1371.82002 · doi:10.1016/j.physrep.2005.10.009
[9] Broeck W, Gioannini C, Goncalves B, Quaggiotto M, Colizza V, Vespignani A (2011) The GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale. BMC Infect Dis 11(1):37. doi:10.1186/1471-2334-11-37 · doi:10.1186/1471-2334-11-37
[10] Dangerfield CE, Ross JV, Keeling MJ (2009) Integrating stochasticity and network structure in an epidemic model. J R Soc Interface 6:761-774. doi:10.1098/rsif.2008.0410
[11] Danon L, Ford A, House T, Jewell CP, Keeling MJ, Roberts GO, Ross JV, Vernon MC (2011) Networks and the epidemiology of infectious disease. Interdiscip Perspect Infect Dis 284:909:1-28. doi:10.1155/2011/284909
[12] Decreusefond L, Dhersin JS, Moyal P, Tran VC (2012) Large graph limit for an sir process in random network with heterogeneous connectivity. Ann Appl Probab 22:541-575 · Zbl 1263.92040 · doi:10.1214/11-AAP773
[13] Dunne JA, Williams RJ (2009) Cascading extinctions and community collapse in model food webs. Philos Trans R Soc Lond B 364:1711-1723. doi:10.1098/rstb.2008.0219 · doi:10.1098/rstb.2008.0219
[14] Durrett R (2007) Random graph dynamics · Zbl 1116.05001
[15] Eames KTD, Keeling MJ (2002) Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. PNAS 99:13,330-13,335. doi:10.1073/pnas.202244299 · doi:10.1073/pnas.202244299
[16] Gardiner CW (2004) Handbook of stochastic methods for physics. Chemistry and the natural sciences. Springer, Berlin · Zbl 1143.60001 · doi:10.1007/978-3-662-05389-8
[17] Gleeson JP (2011) High-accuracy approximation of binary-state dynamics on networks. Phys Rev Lett 107(068):701. doi:10.1103/PhysRevLett.107.068701 · doi:10.1103/PhysRevLett.107.068701
[18] Hébert-Dufresne L, Noël PA, Marceau V, Allard A, Dubé LJ (2010) Propagation dynamics on networks featuring complex topologies. Phys Rev E 82(3):036,115. doi:10.1103/PhysRevE.82.036115 · doi:10.1103/PhysRevE.82.036115
[19] House T, Keeling MJ (2011) Insights from unifying modern approximations to infections on networks. J R Soc Int 8(54):67-73. doi:10.1098/rsif2010.0179
[20] House T, Davies G, Danon L, Keeling MJ (2009) A motif-based approach to network epidemics. Bull Math Biol 71:1693-1706. doi:10.1007/s11538-009-9420-z · Zbl 1173.92028 · doi:10.1007/s11538-009-9420-z
[21] Karrer B, Newman MEJ (2010) Random graphs containing arbitrary distributions of subgraphs. Phys Rev E 82(6):066118. doi:10.1103/PhysRevE.82.066118 · doi:10.1103/PhysRevE.82.066118
[22] Keeling MJ, Eames KTD (2005) Networks and epidemic models. J R Soc Interface 2(4):295-307. doi:10.1098/rsif2005.0051
[23] Keeling MJ, Rand DA, Morris AJ (1997) Correlation models for childhood epidemics. Proc R Soc B 264(1385):1149-1156. doi:10.1098/rspb.1997.0159 · Zbl 0949.93059 · doi:10.1098/rspb.1997.0159
[24] Marceau V, Noël PA, Hébert-Dufresne L, Allard A, Dubé LJ (2010) Adaptive networks: coevolution of disease and topology. Phys Rev E 82(3):036116. doi:10.1103/PhysRevE.82.036116 · doi:10.1103/PhysRevE.82.036116
[25] Marceau V, Noël PA, Hébert-Dufresne L, Allard A, Dubé LJ (2011) Modeling the dynamical interaction between epidemics on overlay networks. Phys Rev E 84(2):026105. doi:10.1103/PhysRevE.84.026105 · doi:10.1103/PhysRevE.84.026105
[26] McLane AJ, Semeniuk C, McDermid GJ, Marceau DJ (2011) The role of agent-based models in wildlife ecology and management. Ecol Model 222:1544-1556. doi:10.1016/j.ecolmodel.2011.01.020 · doi:10.1016/j.ecolmodel.2011.01.020
[27] Miller JC (2010) A note on a paper by Erik Volz: SIR dynamics in random networks. J Math Biol 62(3):349-358. doi:10.1007/s00285-010-0337-9 · Zbl 1232.92067 · doi:10.1007/s00285-010-0337-9
[28] Miller JC, Slim AC, Volz EM (2011) Edge-based compartmental modeling for infectious disease spread. J R Soc Interface. doi:10.1098/rsif.2011.0403 · doi:10.1098/rsif.2011.0403
[29] Newman MEJ (2010) Networks: an introduction. Oxford University Press, Oxford · Zbl 1195.94003 · doi:10.1093/acprof:oso/9780199206650.001.0001
[30] Newman MEJ, Strogatz SH, Watts DJ (2001) Random graphs with arbitrary degree distributions and their applications. Phys Rev E 64(026):118. doi:10.1103/PhysRevE.64.026118 · doi:10.1103/PhysRevE.64.026118
[31] Noël PA, Allard A, Hébert-Dufresne L, Marceau V, Dubé LJ (2012) Propagation on networks: an exact alternative perspective. Phys Rev E 85(031):118. doi:10.1103/PhysRevE.85.031118 · Zbl 1252.82058 · doi:10.1103/PhysRevE.85.031118
[32] Park J, Newman MEJ (2004) Statistical mechanics of networks. Phys Rev E 70(1—-13):066117 · doi:10.1103/PhysRevE.70.066117
[33] Rezende EL, Lavabre JE, Guimarães PR, Jordano P, Bascompte JB (2007) Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448:925-928. doi:10.1038/nature05956 · doi:10.1038/nature05956
[34] Rogers T (2011) Maximum-entropy moment-closure for stochastic systems on networks. J Stat Mech (05):P05007 · Zbl 1143.92036
[35] Sharkey KJ (2011) Deterministic epidemic models on contact networks: correlations and unbiological terms. Theor Popul Biol 79(4):115-129. doi:10.1016/j.tpb.2011.01.004 · Zbl 1338.92140 · doi:10.1016/j.tpb.2011.01.004
[36] Taylor M, Simon PL, Green DM, House T, Kiss IZ (2012) From Markovian to pairwise epidemic models and the performance of moment closure approximations. J Math Biol 64(6):1021-1042. doi:10.1007/s00285-011-0443-3 · Zbl 1252.92051 · doi:10.1007/s00285-011-0443-3
[37] Van Kampen NG (2007) Stochastic processes in physics and chemistry, 3rd edn · Zbl 0511.60038
[38] Volz E (2008) SIR dynamics in random networks with heterogeneous connectivity. J Math Biol 56(3):293-310. doi:10.1007/s00285-007-0116-4 · Zbl 1143.92036 · doi:10.1007/s00285-007-0116-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.