×

A generalized matrix power mean and a new quantum Hellinger divergence. (English) Zbl 07896162

MSC:

47Axx General theory of linear operators
15Axx Basic linear algebra
15Bxx Special matrices
Full Text: DOI

References:

[1] Dinh, T. H.; Le, C. T.; Le, X. D.; Pham, T. C., Some matrix equations involving the weighted geometric mean, Adv. Operat. Theory, 7, 2, 2022 · Zbl 1480.15015 · doi:10.1007/s43036-021-00165-y
[2] Trentelman, H. L.; van der Woude, J. W., Almost invariance and noninteracting control: A frequency-domain analysis, Linear Algebra Appl., 101, 221-254, 1988 · Zbl 0666.93035 · doi:10.1016/0024-3795(88)90152-8
[3] van der Woude, J. W., Almost non-interacting control by measurement feedback, Syst. Control Lett., 9, 7-16, 1987 · Zbl 0623.93028 · doi:10.1016/0167-6911(87)90003-X
[4] Pusz, W.; Woronowicz, S. L., Functional calculus for sesquilinear forms and the purification map, Math. Phys., 8, 159-170, 1975 · Zbl 0327.46032
[5] Moakher, M., A differential geometric approach to the geometric mean of symmetric positive-definite matrices, SIAM J. Matrix Anal. Appl., 26, 735-747, 2005 · Zbl 1079.47021 · doi:10.1137/S0895479803436937
[6] Bhatia, R.; Holbrook, J., Riemannian geometry and matrix geometric means, Linear Algebra Appl., 413, 594-618, 2006 · Zbl 1088.15022 · doi:10.1016/j.laa.2005.08.025
[7] Bhatia, R.; Gaubert, S.; Jain, T., Matrix versions of the Hellinger distance, Lett. Math. Phys., 109, 1777-1804, 2019 · Zbl 1420.15016 · doi:10.1007/s11005-019-01156-0
[8] T. H. Dinh, H. B. Du, A. N. Nguyen, and T. D. Vuong, ‘‘On new quantum divergences,’’ Lin. Multilin. Algebra (2023, in press).
[9] Dinh, T. H.; Le, A. V.; Le, C. T.; Phan, N. Y., The matrix Heinz mean and related divergence, Hacet. J. Math. Stat., 51, 362-372, 2022 · Zbl 1497.47032 · doi:10.15672/hujms.902879
[10] Dinh, T. H.; Le, C. T.; Vo, B. K.; Vuong, T. D., Weighted Hellinger distance and in-betweenness property, Math. Inequal. Appl., 24, 157-165, 2021 · Zbl 07354295
[11] Dinh, T. H.; Le, C. T.; Vo, B. K.; Vuong, T. D., The \(\alpha \), Lin. Algebra Appl., 624, 267-280, 2021 · Zbl 07355223 · doi:10.1016/j.laa.2021.04.007
[12] Lim, Y.; Palfia, M., Matrix power means and the Karcher mean, J. Funct. Anal., 262, 1498-1514, 2012 · Zbl 1244.15014 · doi:10.1016/j.jfa.2011.11.012
[13] Seo, Y., Operator power mean due to Lawson-Lim-Palfia for \(1<t<2\), Lin. Algebra Appl., 459, 342-356, 2014 · Zbl 1307.47014 · doi:10.1016/j.laa.2014.07.011
[14] Furuta, T., Invitation to Linear Operators, 2001, London: Taylor Francis, London · Zbl 1029.47001 · doi:10.1201/b16820
[15] E. Carlen, Trace Inequalities and Quantum Entropy, An Introduction Course (2009). http://www.mathphys.org/AZschool/material/AZ09-carlen.pdf. · Zbl 1218.81023
[16] M. M. Wolf, Quantum Channels and Operations: Guided Tour (2012). http://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.