×

Stability of geodesic vectors in low-dimensional Lie algebras. (English) Zbl 1508.37047

Summary: A naturally parameterised curve in a Lie group with a left invariant metric is a geodesic, if its tangent vector left-translated to the identity satisfies the Euler equation \(\dot{Y} = \operatorname{ad}^t_Y Y\) on the Lie algebra \(\mathfrak{g}\) of \(G\). Stationary points (equilibria) of the Euler equation are called geodesic vectors: the geodesic starting at the identity in the direction of a geodesic vector is a one-parameter subgroup of \(G\). We give a complete classification of Lyapunov stable and unstable geodesic vectors for metric Lie algebras of dimension 3 and for unimodular metric Lie algebras of dimension 4.

MSC:

37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
53C30 Differential geometry of homogeneous manifolds
37C75 Stability theory for smooth dynamical systems
34G20 Nonlinear differential equations in abstract spaces

References:

[1] V. Arnold:Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble) 16 (1966) 319-361. · Zbl 0148.45301
[2] V. Arnold:Mathematical Methods of Classical Mechanics, Springer, Berlin (1978). · Zbl 0386.70001
[3] V. Berestovskii, Y. Nikonorov:Riemannian Manifolds and Homogeneous Geodesics, Springer Monographs in Mathematics, Springer, Berlin (2020). · Zbl 1460.53001
[4] Z. Dušek:Homogeneous geodesics and g.o. manifolds, Note Matematica 38 (2018) 1-15. · Zbl 1401.53041
[5] V. V. Kaĭzer:Conjugate points of left-invariant metrics on Lie groups, Soviet Math. (Iz. VUZ) 34 (1990) 32-44. · Zbl 0722.53049
[6] A. Kocsard, G. Ovando, S. Reggiani:On first integrals of the geodesic flow on Heisenberg nilmanifolds, Diff. Geom. Appl. 49 (2016) 496-509. · Zbl 1353.53059
[7] O. Kowalski, J. Szenthe:On the existence of homogeneous geodesics in homogeneous Riemannian manifolds, Geom. Dedicata 81 (2000) 209-214. · Zbl 0980.53061
[8] R. A. Marinosci:Homogeneous geodesics in a three-dimensional Lie group, Comm. Math. Univ. Carolinae 43 (2002) 261-270. · Zbl 1090.53038
[9] J. Milnor:Curvatures of left invariant metrics on Lie groups, Adv. Math. 21 (1976) 293-329. · Zbl 0341.53030
[10] J. Montaldi:Relative equilibria and conserved quantities in symmetric Hamiltonian systems, in:Peyresq Lectures on Nonlinear Phenomena, Peyresq 1998/1999, World Scientific Publishers, River Edge (2000) 239-280. · Zbl 0977.37029
[11] G. M. Mubarakzjanov:On solvable Lie algebras (Russian), Izv. Vys. Ucheb. Zaved. Matematika 32 (1963) 114-123. · Zbl 0166.04104
[12] A. K. Nguyen:Stability of Homogeneous Geodesics in Low-Dimensional Lie Groups, Masters Dissertation, Department of Mathematics and Statistics, La Trobe University (2021).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.