×

Semisimilar solutions for unsteady free-convective boundary-layer flow on a vertical flat plate. (English) Zbl 0624.76113

(Authors’ summary.) The analysis of unsteady free convection has classically been made difficult because of the singularities which occur in the governing boundary-layer equations, and because anomalies often occur which are related to the occurence of these singularities.
In the present paper a semisimilar analysis of unsteady free convection in the vicinity of a vertical flat plate is presented, wherein a number of possible wall temperature variations with time and position are derived. Unique scalings are formulated for the semisimilar equations that aid in the numerical solutions and in the physical interpretation of the results. These scalings collapse the infinite time and position coordinates into a finite region, and present the semisimilar problem in a format bounded by similarity equations. Solutions are carried out which indicate the occurence of overshoots in the temperature profiles and heat transfer for a variety of conditions. Also concepts such as the ‘limit- of-pure-conduction’ and ‘leading edge penetration distances’ are shown to require special interpretation under variable wall-temperature conditions.
Reviewer: H.S.Takhar

MSC:

76R10 Free convection
80A20 Heat and mass transfer, heat flow (MSC2010)
76M99 Basic methods in fluid mechanics
Full Text: DOI

References:

[1] Stewartson, Q. J. Mech. Appl. Maths 4 pp 182– (1951)
[2] Sparrow, Trans. ASME 80 pp 379– (1958)
[3] Sparrow, J. Heat Transfer 78 pp 501– (1956)
[4] Heinisch, Z. angew. Math. Phys. 20 pp 401– (1969)
[5] Hall, Proc. R. Soc. Lond. 310 pp 401– (1969)
[6] DOI: 10.1017/S0022112069000061 · Zbl 0179.57001 · doi:10.1017/S0022112069000061
[7] Gebhart, Trans. ASME C: J. Heat Transfer 83 pp 61– (1961) · doi:10.1115/1.3680469
[8] DOI: 10.1007/BF01601181 · Zbl 0071.40201 · doi:10.1007/BF01601181
[9] Dennis, J. Inst. Maths Applics 10 pp 165– (1972)
[10] Carter, AIAA paper 19 pp 165– (1974)
[11] DOI: 10.1016/0017-9310(76)90109-5 · Zbl 0361.76093 · doi:10.1016/0017-9310(76)90109-5
[12] DOI: 10.1017/S0022112073001539 · Zbl 0267.76026 · doi:10.1017/S0022112073001539
[13] Siegel, J. Heat Transfer 83 pp 61– (1961)
[14] Schmidt, Technische Mechanik und Thermodynamik 1 pp 341– (1930)
[15] Ostrach, NACA Rep. 14 pp 1531– (1953)
[16] DOI: 10.1016/0017-9310(71)90198-0 · doi:10.1016/0017-9310(71)90198-0
[17] Menold, J. Appl. Mech. 29 pp 124– (1962) · Zbl 0109.18902 · doi:10.1115/1.3636443
[18] DOI: 10.1016/0017-9310(77)90069-2 · doi:10.1016/0017-9310(77)90069-2
[19] Ingham, J. Appl. Mech. 44 pp 396– (1977) · Zbl 0398.76055 · doi:10.1115/1.3424090
[20] Illingworth, Proc. Comb. Phil. Soc. 46 pp 603– (1950)
[21] DOI: 10.1002/aic.690080525 · doi:10.1002/aic.690080525
[22] Yang, J. Appl. Mech. 82 pp 230– (1960) · Zbl 0095.40703 · doi:10.1115/1.3643943
[23] DOI: 10.1137/0138019 · Zbl 0443.76039 · doi:10.1137/0138019
[24] Williams, AIAA J 12 pp 1388– (1974)
[25] Wang, J. Fluid Mech. 155 pp 413– (1985)
[26] DOI: 10.1016/0021-9991(83)90003-7 · Zbl 0529.76002 · doi:10.1016/0021-9991(83)90003-7
[27] Walker, Purdue University Tech. Rep. CFMTR pp 182– (1975)
[28] Sugawara, Proc. First Japan Natl Congr. for Appl. Mech 4 pp 182– (1951)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.