×

Parameter identification of aggregated thermostatically controlled loads for smart grids using PDE techniques. (English) Zbl 1317.93077

Summary: This paper develops methods for model identification of aggregated thermostatically controlled loads (TCLs) in smart grids, via partial differential equation (PDE) techniques. Control of aggregated TCLs provides a promising opportunity to mitigate the mismatch between power generation and demand, thus enhancing grid reliability and enabling renewable energy penetration. To this end, this paper focuses on developing parameter identification algorithms for a PDE-based model of aggregated TCLs. First, a two-state boundary-coupled hyperbolic PDE model for homogenous TCL populations is derived. This model is extended to heterogeneous populations by including a diffusive term, which provides an elegant control-oriented model. Next, a passive parameter identification scheme and a swapping-based identification scheme are derived for the PDE model structure. Simulation results demonstrate the efficacy of each method under various autonomous and non-autonomous scenarios. The proposed models can subsequently be employed to provide system critical information for power system monitoring and control.

MSC:

93B30 System identification
93C20 Control/observation systems governed by partial differential equations
93C95 Application models in control theory
93A30 Mathematical modelling of systems (MSC2010)
Full Text: DOI

References:

[1] DOI: 10.1109/CCA.2012.6402428 · doi:10.1109/CCA.2012.6402428
[2] DOI: 10.1109/TPWRS.2007.913298 · doi:10.1109/TPWRS.2007.913298
[3] DOI: 10.1109/TCST.2012.2204261 · doi:10.1109/TCST.2012.2204261
[4] Bompard, Proceedings of 8th Mediterranean Electrotechnical Conference 2 pp 730– (1996)
[5] DOI: 10.1016/j.enconman.2008.12.012 · doi:10.1016/j.enconman.2008.12.012
[6] DOI: 10.1109/JPROC.2010.2081652 · doi:10.1109/JPROC.2010.2081652
[7] DOI: 10.1017/S0305004100023197 · doi:10.1017/S0305004100023197
[8] International Energy Agency, World energy outlook 2006 (2006)
[9] DOI: 10.1049/iet-rpg.2008.0086 · doi:10.1049/iet-rpg.2008.0086
[10] DOI: 10.1109/9.376055 · Zbl 0821.93048 · doi:10.1109/9.376055
[11] Kundu S., Safe protocol for controlling power consumption by a heterogeneous population of loads (2012)
[12] DOI: 10.1109/TPWRS.2005.846072 · doi:10.1109/TPWRS.2005.846072
[13] DOI: 10.2514/2.6901 · doi:10.2514/2.6901
[14] DOI: 10.1109/TAC.1985.1104071 · Zbl 0566.93050 · doi:10.1109/TAC.1985.1104071
[15] DOI: 10.1109/TPWRS.2012.2204074 · doi:10.1109/TPWRS.2012.2204074
[16] DOI: 10.1016/j.enpol.2008.09.038 · doi:10.1016/j.enpol.2008.09.038
[17] DOI: 10.1109/NOMSW.2010.5486561. · doi:10.1109/NOMSW.2010.5486561
[18] DOI: 10.1109/TSG.2010.2089069 · doi:10.1109/TSG.2010.2089069
[19] DOI: 10.1109/TSG.2010.2046346 · doi:10.1109/TSG.2010.2046346
[20] Moura S.J., Observer design for boundary coupled PDEs: Application to thermostatically controlled loads in smart grids (2013)
[21] DOI: 10.1016/j.enconman.2011.10.019 · doi:10.1016/j.enconman.2011.10.019
[22] Petersen M., Optimal dispatch strategy for the agile virtual power plant imbalance compensation problem (2012)
[23] DOI: 10.1109/TPWRS.2007.901489 · doi:10.1109/TPWRS.2007.901489
[24] Smyshlyaev A., Adaptive control of parabolic PDEs (2010) · Zbl 1225.93005 · doi:10.1515/9781400835362
[25] DOI: 10.1016/j.enpol.2008.09.030 · doi:10.1016/j.enpol.2008.09.030
[26] DOI: 10.1016/j.enpol.2008.06.036 · doi:10.1016/j.enpol.2008.06.036
[27] Zhang W., Reduced-order modeling of aggregated thermostatic loads with demand response (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.