×

Leavitt path algebras of weighted Cayley graphs \(C_n(S,w)\). (English) Zbl 1483.16028

Consider a finite group \(G\), a subset \(S\subset G\) with \(S\) any nonempty generating set of \(G\), a map \(w\colon S \to {\mathbb N}\) and \(\hbox{Cay}(G,S,w)\) the weighted Cayley graph. In the particular case that \(n\) is a positive integer and \(G={\mathbb Z}_n\) one can denote \(C_n(S,w)=\hbox{Cay}({\mathbb Z}_n,S,w)\). In Theorem 3.1 of this paper, the author finds that \(L(\hbox{Cay}(G,S,w))\) is a purely infinite simple Leavitt path algebra if and only if \(W:=\sum_{s \in S}w(s) \ge 2\) and if and only if \(L(\hbox{Cay}(G,S,w))\) does not have the IBN property. In the case \(S=\{s_1,s_2, \ldots , s_k\} \subsetneq {\mathbb Z}_n, \ s_1<s_2< \cdots <s_k\), \(0 \notin S\) and \(\sum_{s_j \in S}w(s_j) \ge 2\) (\(L(C_n(S,w))\) a purely infinite simple Leavitt path algebra), the author shows how to calculate its Grothendieck group. Also other specific Leavitt path algebras of Cayley graphs and its Grothendieck group \(K_0(L(C_n(S,w)))\) are described. So is the case of Leavitt path algebras associated to Cayley graphs for dihedral groups.

MSC:

16S88 Leavitt path algebras
19A49 \(K_0\) of other rings

References:

[1] Abrams, G.; Ánh, PN; Louly, A.; Pardo, E., The classification question for Leavitt path algebras, J. Algebra, 320, 5, 1983-2026 (2008) · Zbl 1205.16013 · doi:10.1016/j.jalgebra.2008.05.020
[2] Abrams, G.; Aranda Pino, G.; Siles Molina, M., Locally finite Leavitt path algebras, Israel J. Math., 165, 329-348 (2008) · Zbl 1169.16008 · doi:10.1007/s11856-008-1014-1
[3] Abrams G, Ara P and Molina M S, Leavitt path algebras, volume 2191 of Lecture Notes in Mathematics (2017) (London: Springer) · Zbl 1393.16001
[4] Abrams, G.; Pino, GA, Purely infinite simple Leavitt path algebras, J. Pure Appl. Algebra, 207, 3, 553-563 (2006) · Zbl 1137.16028 · doi:10.1016/j.jpaa.2005.10.010
[5] Abrams, G.; Pino, GA, The Leavitt path algebras of generalized Cayley graphs, Mediterr. J. Math., 13, 1, 1-27 (2016) · Zbl 1350.16004 · doi:10.1007/s00009-014-0464-4
[6] Abrams G, Erickson S and Gil Canto C, Leavitt path algebras of Cayley graphs \(C_n^j\), Mediterr. J. Math.15(5) (2018) Art. 197, 23 · Zbl 1410.16031
[7] Abrams, G.; Louly, A.; Pardo, E.; Smith, C., Flow invariants in the classification of Leavitt path algebras, J. Algebra, 333, 202-231 (2011) · Zbl 1263.16007 · doi:10.1016/j.jalgebra.2011.01.022
[8] Abrams G and Schoonmaker B, Leavitt path algebras of Cayley graphs arising from cyclic groups, in: Noncommutative rings and their applications, volume 634 of Contemp. Math., pages 1-10, Amer. Math. Soc., Providence, RI (2015) · Zbl 1326.16006
[9] Ara P, Goodearl K R and Pardo E, \(K_0\) of purely infinite simple regular rings, \(K\)-Theory 26(1) (2002) 69-100 · Zbl 1012.16013
[10] Ara, P.; Moreno, MA; Pardo, E., Nonstable \(K\)-theory for graph algebras, Algebr. Represent. Theory, 10, 2, 157-178 (2007) · Zbl 1123.16006 · doi:10.1007/s10468-006-9044-z
[11] Kra, I.; Simanca, SR, On circulant matrices, Notices Amer. Math. Soc., 59, 3, 368-377 (2012) · Zbl 1246.15030 · doi:10.1090/noti804
[12] Leavitt, WG, The module type of a ring, Trans. Amer. Math. Soc., 103, 113-130 (1962) · Zbl 0112.02701 · doi:10.1090/S0002-9947-1962-0132764-X
[13] Nam, TG; Phuc, NT, The structure of Leavitt path algebras and the invariant basis number property, J. Pure Appl. Algebra, 223, 11, 4827-4856 (2019) · Zbl 1412.16020 · doi:10.1016/j.jpaa.2019.02.017
[14] Newman, M., Integral matrices, Pure and Applied Mathematics (1972), New York-London: Academic Press, New York-London · Zbl 0254.15009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.