×

A gradient-based cuckoo search algorithm for a reservoir-generation scheduling problem. (English) Zbl 1461.90046

Summary: In this paper, a gradient-based cuckoo search algorithm (GCS) is proposed to solve a reservoir-scheduling problem. The classical cuckoo search (CS) is first improved by a self-adaptive solution-generation technique, together with a differential strategy for Lévy flight. This improved CS is then employed to solve the reservoir-scheduling problem, and a two-way solution-correction strategy is introduced to handle variants’ constraints. Moreover, a gradient-based search strategy is developed to improve the search speed and accuracy. Finally, the proposed GCS is used to obtain optimal schemes for cascade reservoirs in the Jinsha River, China. Results show that the mean and standard deviation of power generation obtained by GCS are much better than other methods. The converging speed of GCS is also faster. In the optimal results, the fluctuation of the water level obtained by GCS is small, indicating the proposed GCS’s effectiveness in dealing with reservoir-scheduling problems.

MSC:

90B35 Deterministic scheduling theory in operations research
90C59 Approximation methods and heuristics in mathematical programming

Software:

GSA

References:

[1] Reddy, S.S.; Momoh, J.A.; Realistic and transparent optimum scheduling strategy for hybrid power system; IEEE Trans. Smart Grid: 2015; Volume 6 ,3114-3125.
[2] Reddy, S.S.; Abhyankar, A.R.; Bijwe, P.R.; Market clearing for a wind-thermal power system incorporating wind generation and load forecast uncertainties; Proceedings of the 2012 IEEE Power and Energy Society General Meeting: ; ,1-8.
[3] Reddy, S.S.; Panigrahi, B.K.; Kundu, R.; Mukherjee, R.; Debchoudhury, S.; Energy and spinning reserve scheduling for a wind-thermal power system using cma-es with mean learning technique; Int. J. Electr. Power Energy Syst.: 2013; Volume 53 ,113-122.
[4] Reddy, S.S.; Bijwe, P.R.; Abhyankar, A.R.; Real-time economic dispatch considering renewable power generation variability and uncertainty over scheduling period; IEEE Syst. J.: 2015; Volume 9 ,1440-1451.
[5] Liao, X.; Zhou, J.; Ouyang, S.; Zhang, R.; Zhang, Y.; An adaptive chaotic artificial bee colony algorithm for short-term hydrothermal generation scheduling; Int. J. Electr. Power Energy Syst.: 2013; Volume 53 ,34-42.
[6] Tian, H.; Yuan, X.; Ji, B.; Chen, Z.; Multi-objective optimization of short-term hydrothermal scheduling using non-dominated sorting gravitational search algorithm with chaotic mutation; Energy Convers. Manag.: 2014; Volume 81 ,504-519.
[7] Wang, K.W.; Chang, L.C.; Chang, F.J.; Multi-tier interactive genetic algorithms for the optimization of long-term reservoir operation; Adv. Water Resour.: 2011; Volume 34 ,1343-1351.
[8] Zhang, H.; Zhou, J.; Fang, N.; Zhang, R.; Zhang, Y.; An efficient multi-objective adaptive differential evolution with chaotic neuron network and its application on long-term hydropower operation with considering ecological environment problem; Int. J. Electr. Power Energy Syst.: 2013; Volume 45 ,60-70.
[9] Liao, X.; Zhou, J.; Zhang, R.; Zhang, Y.; An adaptive artificial bee colony algorithm for long-term economic dispatch in cascaded hydropower systems; Int. J. Electr. Power Energy Syst.: 2012; Volume 43 ,1340-1345.
[10] Soares, S.; Ohishi, T.; Cicogna, M.; Arce, A.; Dynamic Dispatch of Hydro Generating Units; Proceedings of the 2003 IEEE Bologna Power Tech Conference: ; Volume Volume 2 ,6.
[11] Cheng, C.T.; Liao, S.L.; Tang, Z.T.; Zhao, M.Y.; Comparison of particle swarm optimization and dynamic programming for large scale hydro unit load dispatch; Energy Convers. Manag.: 2009; Volume 50 ,3007-3014.
[12] Tu, M.-Y.; Hsu, N.-S.; Yeh, W.W.-G.; Optimization of reservoir management and operation with hedging rules; J. Water Resour. Plan. Manag.: 2003; Volume 129 ,86-97.
[13] Juhwan, Y.; Maximization of hydropower generation through the application of a linear programming model; J. Hydrol.: 2009; Volume 376 ,182-187.
[14] Nanda, J.; Bijwe, P.R.; Optimal hydrothermal scheduling with cascaded plants using progressive optimality algorithm; IEEE Trans. Power Appar. Syst.: 1981; Volume PAS-100 ,2093-2099.
[15] Cheng, C.; Shen, J.; Wu, X.; Short-term scheduling for large-scale cascaded hydropower systems with multivibration zones of high head; J. Water Resour. Plan. Manag.: 2011; Volume 138 ,257-267.
[16] Chow, V.T.; Maidment, D.R.; Tauxe, G.W.; Computer time and memory requirements for DP and DDDP in water resource systems analysis; Water Resour. Res.: 1975; Volume 11 ,621-628.
[17] Cheng, C.; Wang, S.; Chau, K.W.; Wu, X.; Parallel discrete differential dynamic programming for multireservoir operation; Environ. Model. Softw.: 2014; Volume 57 ,152-164.
[18] Wang, C.; Zhou, J.; Peng, L.; Liu, Y.; Long-term scheduling of large cascade hydropower stations in Jinsha River, China; Energy Convers. Manag.: 2015; Volume 90 ,476-487.
[19] Beck, A.T.; Gomes, W.J.D.S.; A comparison of deterministic, reliability-based and risk-based structural optimization under uncertainty; Probab. Eng. Mech.: 2012; Volume 28 ,18-29.
[20] Yoo, D.G.; Improved mine blast algorithm for optimal cost design of water distribution systems; Eng. Optim.: 2014; Volume 47 ,1602-1618.
[21] Almasi, M.H.; Sadollah, A.; Mounes, S.M.; Karim, M.R.; Optimization of a transit services model with a feeder bus and rail system using metaheuristic algorithms; J. Comput. Civ. Eng.: 2015; Volume 29 ,04014090.
[22] Moeini, R.; Soltani-Nezhad, M.; Daei, M.; Constrained gravitational search algorithm for large scale reservoir operation optimization problem; Eng. Appl. Artif. Intell.: 2017; Volume 62 ,222-233.
[23] Bianchi, L.; Dorigo, M.; Gambardella, L.M.; Gutjahr, W.J.; A survey on metaheuristics for stochastic combinatorial optimization; Nat. Comput.: 2009; Volume 8 ,239-287. · Zbl 1162.90591
[24] Blum, C.; Roli, A.; Metaheuristics in combinatorial optimization: Overview and conceptual comparison; ACM Comput. Surv.: 2003; Volume 35 ,268-308.
[25] Yang, X.S.; Deb, S.; Cuckoo search via levy flights; Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC): ; ,210-214.
[26] Ouyang, P.; Pano, V.; Comparative study of de, pso and ga for position domain pid controller tuning; Algorithms: 2015; Volume 8 ,697-711.
[27] Rabanal, P.; Rodríguez, I.; Rubio, F.; Parallelizing particle swarm optimization in a functional programming environment; Algorithms: 2014; Volume 7 ,554-581.
[28] Nguyen, T.T.; Vo, D.N.; Modified cuckoo search algorithm for multiobjective short-term hydrothermal scheduling; Swarm Evol. Comput.: 2017; Volume 37 ,73-89.
[29] Din, M.; Pal, S.K.; Muttoo, S.K.; Jain, A.; Applying cuckoo search for analysis of lfsr based cryptosystem; Perspect. Sci.: 2016; Volume 8 ,435-439.
[30] Bhateja, A.K.; Bhateja, A.; Chaudhury, S.; Saxena, P.K.; Cryptanalysis of vigenere cipher using cuckoo search; Appl. Soft Comput.: 2015; Volume 26 ,315-324.
[31] Naik, M.K.; Panda, R.; A novel adaptive cuckoo search algorithm for intrinsic discriminant analysis based face recognition; Appl. Soft Comput.: 2016; Volume 38 ,661-675.
[32] Walton, S.; Hassan, O.; Morgan, K.; Brown, M.R.; Modified cuckoo search: A new gradient free optimisation algorithm; Chaos Solitons Fractals: 2011; Volume 44 ,710-718.
[33] Mlakar, U.; Fister, I.; Fister, I.; Hybrid self-adaptive cuckoo search for global optimization; Swarm Evol. Comput.: 2016; Volume 29 ,47-72.
[34] Du, X.; Wang, J.; Jegatheesan, V.; Shi, G.; Parameter estimation of activated sludge process based on an improved cuckoo search algorithm; Bioresour. Technol.: 2017; Volume 249 ,447-456.
[35] Mahdavi, M.; Fesanghary, M.; Damangir, E.; An improved harmony search algorithm for solving optimization problems; Appl. Math. Comput.: 2007; Volume 188 ,1567-1579. · Zbl 1119.65053
[36] Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S.; Gsa: A gravitational search algorithm; Inform. Sci.: 2009; Volume 179 ,2232-2248. · Zbl 1177.90378
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.