×

Spatial fractional Darcy’s law to quantify fluid flow in natural reservoirs. (English) Zbl 1514.76086

Summary: Various formulas describing non-Darcy flow have been applied to quantify fluid flow in natural geological media, while there is no universal law or formula that can reliably describe the complex relationship between the flow rate and the pressure gradient for single-phase fluid flow in natural oil/gas reservoirs. This study aims at proposing and evaluating a spatial fractional Darcy’s law model for the calculation of the flow rate of fluids in natural heterogeneous oil/gas reservoirs at any scale. Experiments documented in literature are revisited to identify the transport characteristics of fluid flow in natural media with complex heterogeneity and structures, including for example discontinuous and/or interconnected pores. The fitting exercises show that the spatial fractional Darcy’s law can felicitously depict the flow properties and match well the experimental data shown in seepage curves. The model parameters can also be reasonably simplified, given the possible physical interpretation closely related to the medium structure.

MSC:

76S05 Flows in porous media; filtration; seepage
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] Thomas, S., Enhanced oil recovery-an overview, Oil Gas Sci. Technol., 63, 1, 9-19 (2008)
[2] Yao, Y.; Li, G.; Qin, P., Seepage features of high-velocity non-darcy flow in highly productive reservoirs, J. Nat. Gas Sci. Eng., 27, 1732-1738 (2015)
[3] Chang, A.; Sun, H. G.; Zheng, C.; Lu, B.; Lu, C.; Ma, R.; Zhang, Y., A time fractional convection-diffusion equation to model gas transport through heterogeneous soil and gas reservoirs, Phys. A., 502, 356-369 (2018) · Zbl 1514.76073
[4] Clarkson, C. R.; Freeman, M.; He, L.; Agamalian, M.; Melnichenko, Y. B.; Mastalerz, M.; Bustin, R. M.; Radliński, A. P.; Blach, T. P., Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis, Fuel, 95, 1, 371-385 (2012)
[5] Desbois, G.; Urai, J. L.; Kukla, P. A.; Konstanty, J.; Baerle, C., High-resolution 3D fabric and porosity model in a tight gas sandstone reservoir: A new approach to investigate microstructures from mm- to nm-scale combining argon beam cross-sectioning and SEM imaging, J. Petrol. Sci. Eng., 78, 2, 243-257 (2011)
[6] Bustin, A. M.M.; Bustin, R. M., Importance of rock properties on the producibility of gas shales, Int. J. Coal Geol., 103, 23, 132-147 (2012)
[7] Chang, A.; Sun, H. G., Time-space fractional derivative models for CO2 transport in heterogeneous media, Fract. Calc. Appl. Anal., 21, 1, 151-173 (2018) · Zbl 1439.35522
[8] Mi, L.; Jiang, H.; Li, J., The impact of diffusion type on multiscale discrete fracture model numerical simulation for shale gas, J. Nat. Gas Sci. Eng., 20, 2, 74-81 (2014)
[9] Whitaker, S., Flow in porous media I: A theoretical derivation of Darcy’s law, Trans. Porous Media, 1, 1, 3-25 (1986)
[10] Klinkenberg, L. J., The permeability of porous media to liquids and gases, Drill. Prod. Pract., 2, 2, 200-213 (1941)
[11] Xu, P.; Yu, B.; Qiao, X.; Qiu, S.; Jiang, Z., Radial permeability of fractured porous media by monte carlo simulations, Int. J. Heat Mass Transfer, 57, 1, 369-374 (2013)
[12] Javadpour, F.; Fisher, D.; Unsworth, M., Nanoscale gas flow in shale gas sediments, J. Can. Petrol. Technol., 46, 10, 55-61 (2007)
[13] Civan, F.; Rai, C. S.; Sondergeld, C. H., Shale-gas permeability and diffusivity inferred by improved formulation of relevant retention and transport mechanisms, Trans. Porous Media, 86, 3, 925-944 (2011)
[14] Macini, P.; Mesini, E.; Viola, R., Laboratory measurements of non-darcy flow coefficients in natural and artificial unconsolidated porous media, J. Petrol. Sci. Eng., 77, 3, 365-374 (2011)
[15] Ruth, D.; Ma, H., On the derivation of the Forchheimer equation by means of the averaging theorem, Trans. Porous Media, 7, 3, 255-264 (1992)
[16] Huang, Y., Nonlinear percolation feature in low permeability reservoir, Spec. Oil Gas Reserv. (1997), (in Chinese)
[17] Ding, J.; Yang, S.; Nie, X.; Wang, Z., Dynamic threshold pressure gradient in tight gas reservoir, J. Nat. Gas Sci. Eng., 20, 155-160 (2014)
[18] Obembe, A. D.; Al-Yousef, H. Y.; Hossain, M. E.; Abu-Khamsin, S. A., Fractional derivatives and their applications in reservoir engineering problems: A review, J. Petrol. Sci. Eng., 157, 312-327 (2017)
[19] Caputo, M., Models of flux in porous media with memory, Water Resour. Res., 36, 3, 693-706 (2000)
[20] Garra, R., Fractional-calculus model for temperature and pressure waves in fluid-saturated porous rocks, Phys. Rev. E, 84, 2, 036605 (2011)
[21] Garra, R.; Salusti, E., Application of the nonlocal darcy law to the propagation of nonlinear thermoelastic waves in fluid saturated porous media, Phys. D., 250, 5, 52-57 (2013) · Zbl 1355.76066
[22] I. Ali, N.A. Malik, B. Chanane, Time-fractional nonlinear gas transport equation in tight porous media: An application in unconventional gas reservoirs, in: International Conference on Fractional Differentiation and ITS Applications, 2014, pp. 1-6.
[23] Zhou, H.; Yang, S.; Wang, R.; Zhong, J., Non-Darcian flow or fractional derivative? (2018)
[24] Deseri, L.; Zingales, M., A mechanical picture of fractional-order Darcy equation, Commun. Nonlinear Sci. Numer. Simul., 20, 3, 940-949 (2015) · Zbl 1440.76143
[25] Droghei, R.; Salusti, E., A comparison of a fractional derivative model with an empirical model for non-linear shock waves in swelling shales, J. Petrol. Sci. Eng., 125, 181-188 (2015)
[26] Harris, P. A.; Garra, R., Analytic solution of nonlinear fractional Burgers-type equation by invariant subspace method, Nonlinear Stud., 15, 2, 247-268 (2013)
[27] Zuo, L.; Yu, W.; Wu, K., A fractional decline curve analysis model for shale gas reservoirs, Int. J. Coal Geol., 163, 140-148 (2016)
[28] Chen, W.; Wang, F.; Zheng, B.; Cai, W., Non-Euclidean distance fundamental solution of Hausdorff derivative partial differential equations, Eng. Anal. Bound. Elem., 84, 213-219 (2017) · Zbl 1403.65252
[29] Sun, H. G.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y., A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64, 213-231 (2018) · Zbl 1509.26005
[30] Zhang, Y.; Benson, D. A.; Reeves, D. M., Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications, Adv. Water Resour., 32, 4, 561-581 (2009)
[31] Obembe, A. D.; Hossain, M. E.; Abu-Khamsin, S. A., Variable-order derivative time fractional diffusion model for heterogeneous porous media, J. Petrol. Sci. Eng., 152, Supplement C, 391-405 (2017)
[32] Suzdalnitsky, J.; Ingman, D., Application of differential operator with servo-order function in model of viscoelastic deformation process, J. Eng. Mech., 131, 7, 763-767 (2005)
[33] Deng, Y.; Ping, X.; Qiu, H.; Liu, C., Law of gas nonlinear flow in low permeability pore-fissure media, J. Sichuan Univ., 38, 4, 1-4 (2006), (in Chinese)
[34] Zeng, J.; Wang, X.; Guo, J.; Zeng, F.; Zhang, Q., Composite linear flow model for multi-fractured horizontal wells in tight sand reservoirs with the threshold pressure gradient, J. Petrol. Sci. Eng., 165, 890-912 (2018)
[35] Zeng, B.; Cheng, L.; Li, C., Low velocity non-linear flow in ultra-low permeability reservoir, J. Petrol. Sci. Eng., 80, 1, 1-6 (2011)
[36] Tao, S.; Gao, X.; Li, C.; Zeng, J.; Zhang, X.; Yang, C.; Zhang, J.; Gong, Y., The experimental modeling of gas percolation mechanisms in a coal-measure tight sandstone reservoir: a case study on the coal-measure tight sandstone gas in the upper triassic xujiahe formation, sichuan basin, china, J. Nat. Gas Geosci., 1, 6, 445-455 (2016)
[37] El Amin, M. F.; Amir, S.; Salama, A.; Urozayev, D.; Sun, S., Comparative study of shale-gas production using single- and dual-continuum approaches, J. Petrol. Sci. Eng., 157, 894-905 (2017)
[38] Tian, S.; Lei, G.; He, S.; Yang, L., Dynamic effect of capillary pressure in low permeability reservoirs, Petrol. Explor. Dev., 39, 3, 405-411 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.