×

Toward scalable many-body calculations for nuclear open quantum systems using the Gamow shell model. (English) Zbl 07678466

Summary: Drip-line nuclei have very different properties from those of the valley of stability, as they are weakly bound and resonant. Therefore, the models devised for stable nuclei can no longer be applied therein. Hence, a new theoretical tool, the Gamow Shell Model (GSM), has been developed to study the many-body states occurring at the limits of the nuclear chart. GSM is a configuration interaction model based on the use of the so-called Berggren basis, which contains bound, resonant and scattering states, so that inter-nucleon correlations are fully taken into account and the asymptotes of extended many-body wave functions are precisely handled. However, large complex symmetric matrices must be diagonalized in this framework, therefore the use of very powerful parallel machines is needed therein. In order to fully take advantage of their power, a 2D partitioning scheme using hybrid MPI/OpenMP parallelization has been developed in our GSM code. The specificities of the 2D partitioning scheme in the GSM framework will be described and illustrated with numerical examples. It will then be shown that the introduction of this scheme in the GSM code greatly enhances its capabilities.

MSC:

81-XX Quantum theory
65-XX Numerical analysis

References:

[1] Michel, N.; Nazarewicz, W.; Płoszajczak, M.; Vertse, T., J. Phys. G: Nucl. Part. Phys., 36, Article 013101 pp. (2009)
[2] Fossez, K.; Rotureau, J.; Michel, N.; Liu, Q.; Nazarewicz, W., Phys. Rev. C, 94, Article 054302 pp. (2016)
[3] Fossez, K.; Rotureau, J.; Michel, N.; Płoszajczak, M., Phys. Rev. Lett., 119, Article 032501 pp. (2017)
[4] Jaganathen, Y.; Betan, R. I.; Michel, N.; Nazarewicz, W.; Płoszajczak, M., Phys. Rev. C, 96, Article 054316 pp. (2017)
[5] Vary, J. P.; Maris, P.; Ng, E.; Yang, C.; Sosonkina, M., J. Phys.: Conf. Ser., 180, Article 012083 pp. (2009)
[6] Maris, P.; Aktulga, H. M.; Binder, S.; Calci, A.; Catalyurek, U. V.; Langhammer, J.; Ng, E.; Saule, E.; Roth, R.; Vary, J. P.; Yang, C., J. Phys.: Conf. Ser., 454, Article 012063 pp. (2013)
[7] Maris, P.; Aktulga, H. M.; Caprio, M. A.; Catalyurek, U. V.; Ng, E.; Oryspayev, D.; Potter, H.; Saule, E.; Sosonkina, M.; Vary, J. P.; Yang, C.; Zhou, Z., J. Phys.: Conf. Ser., 403, Article 012019 pp. (2012)
[8] Aktulga, H. M.; Afibuzzaman, M.; Williams, S.; Buluc, A.; Shao, M.; Yang, C.; Ng, E. G.; Maris, P.; Vary, J. P., IEEE Trans. Parallel Distrib. Syst., 28, 1550-1563 (2017)
[9] Shao, M.; Aktulga, H. M.; Yang, C.; Ng, E. G.; Maris, P.; Vary, J. P., Comput. Phys. Comm., 222, 1-13 (2018)
[10] Aktulga, H. M.; Yang, C.; Ng, E. G.; Maris, P.; Vary, J., Concurr. Comput.: Pract. Exper., 26, 2631-2651 (2014)
[11] Johnson, C. W.; Ormand, W. E.; Krastev, P. G., Comput. Phys. Commun., 184, 2761-2774 (2013)
[12] C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics, Hermann, 1997. · Zbl 1140.81300
[13] Michel, N., Eur. Phys. J. A, 42, 523-527 (2009)
[14] Berggren, T., Nucl. Phys. A, 109, 265-287 (1968)
[15] Michel, N.; Nazarewicz, W.; Płoszajczak, M., Nucl. Phys. A, 794, 29-46 (2007)
[16] Whitehead, R. R.; Watt, A.; Cole, B. J.; Morrison, I., Adv. Nucl. Phys., 9, 123-176 (1977)
[17] H.M. Aktulga, C. Yang, E.G. Ng, P. Maris, J. Vary, Large-scale parallel null space calculation for nuclear configuration interaction, in: International Conference on High Performance Computing and Simulation (HPCS 2011), 2011, pp. 176-185.
[18] Löwdin, P. O., Phys. Rev., 97, 1509 (1955)
[19] Bar-on, I.; Ryaboy, V., SIAM J. Sci. Comput., 18, 1412-1435 (1997) · Zbl 0891.65036
[20] Sleijpen, G. J.G.; van der Vorst, H. A., SIAM J. Matrix Anal. Appl., 17, 401-425 (1996) · Zbl 0860.65023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.