×

Effective description of \({ {}}^{5-10}\text{He}\) and the search for a narrow \({{}^4\text{n}}\) resonance. (English) Zbl 1437.81153

Orr, N. A. (ed.) et al., Recent progress in few-body physics. Proceedings of the 22nd international conference on few-body problems in physics, FB22, Caen, France, July 9–13, 2018. Cham: Springer. Springer Proc. Phys. 238, 361-372 (2020).
Summary: Open quantum systems that are at or beyond the limit of particle-emission stability exhibit generic features stemming from their coupling to an environment of positive energy states and decay channels. In nuclear physics, the exotic helium isotopes \(^{5-10}\text{He}\) and the four-neutron system \(^4\text{n}\) represent two prototypical cases of open quantum systems whose structures are highly impacted by the environment. In the first part, a practical approach inspired by halo effective field theory for the description of \(^{5-10}\text{He}\) within tens of keV uncertainties is presented and the parity inversion in \(^9\text{He}\), as well as the possible two-neutron decay of \(^{10}\text{He}\) are discussed. The second part discusses the last ab initio results on the four-neutron system obtained using chiral forces and including continuum couplings.
For the entire collection see [Zbl 1432.81005].

MSC:

81V35 Nuclear physics
81S22 Open systems, reduced dynamics, master equations, decoherence
81T12 Effective quantum field theories
Full Text: DOI

References:

[1] Forssén, C., Hagen, G., Hjorth-Jensen, M., Nazarewicz, W., Rotureau, J.: Living on the edge of stability, the limits of the nuclear landscape. Phys. Scr. T 2013, 014022 (2013) · doi:10.1088/0031-8949/2013/T152/014022
[2] Nazarewicz, W.: Challenges in nuclear structure theory. J. Phys. G 43, 044002 (2016) · doi:10.1088/0954-3899/43/4/044002
[3] Tilley, D.R., et al.: Energy levels of light nuclei \({ A = 5, 6, 7 }\). Nucl. Phys. A 708, 3 (2002)
[4] Tanihata, I., et al.: Measurements of interaction cross sections and radii of \({ \text{He} }\) isotopes. Phys. Lett. B 160, 380 (1985)
[5] Golovkov, M.S., et al.: The \({{}^8\text{He} }\) and \({{}^{10}\text{He}}\) spectra studied in the \({ (t, p) }\) reaction. Phys. Lett. B 672, 22 (2009)
[6] Kobayashi, T., et al.: Quasifree nucleon-knockout reactions from neutron-rich nuclei by a proton target. Nucl. Phys. A 616, 223 (1997)
[7] Aleksandrov, D., et al.: Invariant mass spectrum and \({ \alpha - n }\) correlation function studied in the fragmentation of \({ {}^6\text{He}}\) on a carbon target. Nucl. Phys. A 633, 234 (1998)
[8] Denby, D.H., et al.: Ground state energy and width of \({ {}^7\text{He} }\) from \({ {}^8\text{Li} }\) proton knockout. Phys. Rev. C 78, 044303 (2008)
[9] Aksyutina, Yu., et al.: Properties of the \({ {}^7\text{He}}\) ground state from \({ {}^8\text{He}}\) neutron knockout. Phys. Lett. B 679, 191 (2009)
[10] Tilley, D.R., et al.: Energy levels of light nuclei \({ A = 8, 9, 10 }\). Nucl. Phys. A 745, 155 (2004)
[11] Al Kalanee, T., et al.: Structure of unbound neutron-rich \({ {}^9\text{He} }\) studied using single-neutron transfer. Phys. Rev. C 88, 034301 (2013)
[12] Korsheninnikov, A.A., et al.: Observation of \({ {}^{10}\text{He}} \). Phys. Lett. B 326, 31 (1994)
[13] Ostrowski, A.N., et al.: Spectroscopy of \({ {}^{10}\text{He}} \). Phys. Lett. B 338, 13 (1994)
[14] Johansson, H.T., et al.: The unbound isotopes \({ {}^{9,10}\text{He}} \). Nucl. Phys. A 842, 15 (2010)
[15] Sidorchuk, S.I., et al.: Structure of \({ {}^{10}\text{He}}\) low-lying states uncovered by correlations. Phys. Rev. Lett. 108, 202502 (2012)
[16] Sharov, P.G., Egorova, I.A., Grigorenko, L.V.: Anomalous population of \({ {}^{10}\text{He}}\) states in reactions with \({ {}^{11}\text{Li}} \). Phys. Rev. C 90, 024610 (2014)
[17] Aoyama, S.: Theoretical prediction for the ground state of \({ {}^{10}\text{He}}\) with the method of analytic continuation in the coupling constant. Phys. Rev. Lett. 89, 052501 (2002)
[18] Grigorenko, L.V., Zhukov, M.V.: Problems with the interpretation of the \({ {}^{10}\text{He} }\) ground state. Phys. Rev. C 77, 034611 (2008)
[19] Jones, M.D., et al.: Further insights into the reaction \({ {}^{14}\text{Be} (\text{CH}_2, X) {}^{10}\text{He}} \). Phys. Rev. C 91, 044312 (2015)
[20] Fortune, H.T.: Relative population of \({ 0}^{+ }\) states in \({ {}^{10}\text{He}}\) in various reactions. Phys. Rev. C 88, 054623 (2013)
[21] Fortune, H.T.: Constraints on energies of \({ {}^{10}\text{He}({0}^+) }\) and \({ {}^9\text{He}({1/2}^+) } \). Phys. Rev. C 91, 034306 (2015)
[22] http://www.nndc.bnl.gov/ensdf (2015)
[23] Fossez, K., Rotureau, J., Nazarewicz, W.: Energy spectrum of neutron-rich helium isotopes: complex made simple. Phys. Rev. C 98, 061302(R) (2018) · doi:10.1103/PhysRevC.98.061302
[24] Pudliner, B.S., Pandharipande, V.R.: Quantum Monte Carlo calculations of nuclei with \({ A \le 7 }\). Phys. Rev. C 56, 1720 (1997)
[25] Caurier, E., Navrátil, P.: Proton radii of \({ {}^{4,6,8}\text{He}}\) isotopes from high-precision nucleon-nucleon interactions. Phys. Rev. C 73, 021302(R) (2006)
[26] Lisetskiy, A.F., Barrett, B.R., Kruse, M.K.G., Navrátil, P., Stetcu, I., Vary, J.P.: Ab-initio shell model with a core. Phys. Rev. C 78, 044302 (2008) · doi:10.1103/PhysRevC.78.044302
[27] Sääf, D., Forssén, C.: Microscopic description of translationally invariant core + \({ N } + { N }\) overlap functions. Phys. Rev. C 89, 011303(R) (2014)
[28] Nollett, K.M., Pieper, S.C., Wiringa, R.B.: Quantum Monte Carlo calculations of neutron-\({ \alpha }\) scattering. Phys. Rev. Lett. 99, 022502 (2007) · doi:10.1103/PhysRevLett.99.022502
[29] Hagen, G., Dean, D.J., Hjorth-Jensen, M., Papenbrock, T.: Complex coupled-cluster approach to an ab initio description of open quantum systems. Phys. Lett. B 656, 169 (2007) · doi:10.1016/j.physletb.2007.07.072
[30] Nollett, K.M.: Ab initio calculations of nuclear widths via an integral relation. Phys. Rev. C 86, 044330 (2012) · doi:10.1103/PhysRevC.86.044330
[31] Papadimitriou, G., Rotureau, J., Michel, N., Płoszajczak, M., Barrett, B.R.: Ab-initio no-core Gamow shell model calculations with realistic interactions. Phys. Rev. C 88, 044318 (2013) · doi:10.1103/PhysRevC.88.044318
[32] Baroni, S., Navrátil, P., Quaglioni, S.: Ab initio description of the exotic unbound \({ {}^7\text{He}}\) nucleus. Phys. Rev. Lett. 110, 022505 (2013)
[33] Baroni, S., Navrátil, P., Quaglioni, S.: Unified ab initio approach to bound and unbound states: no-core shell model with continuum and its application to \({ {}^7\text{He}} \). Phys. Rev. C 87, 034326 (2013)
[34] Vorabbi, M., Calci, A., Navrátil, P., Kruse, M.K.G., Quaglioni, S., Hupin, G.: Structure of the exotic \({ {}^9\text{He}}\) nucleus from the no-core shell model with continuum. Phys. Rev. C 97, 034314 (2018)
[35] Bedaque, P.F., van Kolck, U.: Effective field theory for few-nucleon systems. Annu. Rev. Nucl. Part. Sci. 52, 339 (2002) · doi:10.1146/annurev.nucl.52.050102.090637
[36] Hammer, H.W., Ji, C., Phillips, D.R.: Effective field theory description of halo nuclei. J. Phys. G 44, 103002 (2017) · doi:10.1088/1361-6471/aa83db
[37] Bertulani, C.A., Hammer, H.W., van Kolck, U.: Effective field theory for halo nuclei: shallow \({ p }\)-wave states. Nucl. Phys. A 712, 37 (2002) · doi:10.1016/S0375-9474(02)01270-8
[38] Bedaque, P.F., Hammer, H.W., van Kolck, U.: Narrow resonances in effective field theory. Phys. Lett. B 569, 159 (2003) · Zbl 1058.81601 · doi:10.1016/j.physletb.2003.07.049
[39] Rotureau, J., van Kolck, U.: Effective field theory and the Gamow shell model—the \({ {}^6\text{He}}\) halo nucleus. Few-Body Syst. 54, 725 (2013)
[40] Ji, C., Elster, Ch., Phillips, D.R.: \({ {}^6\text{He}}\) nucleus in halo effective field theory. Phys. Rev. C 90, 044004 (2014)
[41] Michel, N., Nazarewicz, W., Płoszajczak, M., Rotureau, J.: Gamow shell-model description of weakly bound and unbound nuclear states. Revista Mexicana De Fisica 5(Suplemento 2), 74 (2004)
[42] Volya, A., Zelevinsky, V.: Discrete and continuum spectra in the unified shell model approach. Phys. Rev. Lett. 94, 052501 (2005) · Zbl 1058.81786 · doi:10.1103/PhysRevLett.94.052501
[43] Rotureau, J., Michel, N., Nazarewicz, W., Płoszajczak, M., Dukelsky, J.: Density matrix renormalisation group approach for many-body open quantum systems. Phys. Rev. Lett. 97, 110603 (2006) · doi:10.1103/PhysRevLett.97.110603
[44] Papadimitriou, G., Kruppa, A.T., Michel, N., Nazarewicz, W., Płoszajczak, M., Rotureau, J.: Charge radii and neutron correlation in helium halo nuclei. Phys. Rev. C 84, 051304(R) (2011) · doi:10.1103/PhysRevC.84.051304
[45] Jaganathen, Y., Id Betan, R.M., Michel, N., Nazarewicz, W., Płoszajczak, M.: Quantified Gamow shell model interaction for \({ psd }\)-shell nuclei. Phys. Rev. C 96, 054316 (2017)
[46] Furutani, H., Horiuchi, H., Tamagaki, R.: Structure of the second \({ 0}^{+ }\) state of \({ {}^4\text{He}} \). Prog. Theor. Phys. 60, 307 (1978)
[47] Furutani, H., Horiuchi, H., Tamagaki, R.: Cluster-model study of the \({ T = 1 }\) states in \({ A = 4 }\) system. Prog. Theor. Phys. 62, 981 (1979)
[48] Hoop Jr., B., Barschall, H.H.: Scattering of neutrons by \({ \alpha }\)-particles. Nucl. Phys. 83, 65 (1966) · doi:10.1016/0029-5582(66)90342-7
[49] Stammbach, Th, Walter, R.L.: \({ R }\)-matrix formulation and phase shifts for \({ n - {}^4\text{He}}\) and \({ p - {}^4\text{He}}\) scattering for energies up to 20 mev. Nucl. Phys. A 180, 225 (1972)
[50] Bond, J.E., Firk, F.W.K.: Determination of \({ R }\)-function and physical-state parameters for \({ n - {}^4\text{He}}\) elastic scattering below 21 mev. Nucl. Phys. A 287, 317 (1977)
[51] Varga, K., Suzuki, Y., Ohbayasi, Y.: Microscopic multicluster description of the neutron-rich helium isotopes. Phys. Rev. C 50, 189 (1994) · doi:10.1103/PhysRevC.50.189
[52] Theeten, M., Baye, D., Descouvemont, P.: Comparison of local, semi-microscopic, and microscopic three-cluster models. Phys. Rev. C 74, 044304 (2006) · doi:10.1103/PhysRevC.74.044304
[53] Fossez, K., Rotureau, J., Michel, N., Liu, Q., Nazarewicz, W.: Single-particle and collective motion in unbound deformed \({ {}^{39}\text{Mg}} \). Phys. Rev. C 94, 054302 (2016)
[54] Fossez, K., Rotureau, J., Michel, N., Nazarewicz, W.: Continuum effects in neutron-drip-line oxygen isotopes. Phys. Rev. C 96, 024308 (2017) · doi:10.1103/PhysRevC.96.024308
[55] Jones, M.D., et al.: Search for excited states in \({ {}^{25}\text{O}} \). Phys. Rev. C 96, 054322 (2017)
[56] Berggren, T.: On the use of resonant states in eigenfunction expansions of scattering and reaction amplitudes. Nucl. Phys. A 109, 265 (1968) · doi:10.1016/0375-9474(68)90593-9
[57] Berggren, T., Lind, P.: Resonant state expansion of the resolvent. Phys. Rev. C 47, 768 (1993) · doi:10.1103/PhysRevC.47.768
[58] Michel, N., Nazarewicz, W., Płoszajczak, M., Vertse, T.: Shell model in the complex energy plane. J. Phys. G 36, 013101 (2009) · doi:10.1088/0954-3899/36/1/013101
[59] Rotureau, J., Michel, N., Nazarewicz, W., Płoszajczak, M., Dukelsky, J.: Density matrix renormalization group approach to two-fluid open many-fermion systems. Phys. Rev. C 79, 014304 (2009) · doi:10.1103/PhysRevC.79.014304
[60] Brillouin, L.: Act. Sci. Ind. 71, 159 (1933)
[61] Shin, I.J., Kim, Y., Maris, P., Vary, J.P., Forssén, C., Rotureau, J., Michel, N.: Ab initio no-core solutions for \({ {}^6\text{Li} } \). J. Phys. G 44, 075103 (2017)
[62] Fossez, K., Rotureau, J., Michel, N., Płoszajczak, M.: Can tetraneutron be a narrow resonance? Phys. Rev. Lett. 119, 032501 (2017) · doi:10.1103/PhysRevLett.119.032501
[63] Fossez, K., Nazarewicz, W., Jaganathen, Y., Michel, N., Płoszajczak, M.: Nuclear rotation in the continuum. Phys. Rev. C 93, 011305(R) (2016) · doi:10.1103/PhysRevC.93.011305
[64] Keeley, N., et al.: Probing the \({ {}^8\text{He}}\) ground state via the \({ {}^8\text{He} (p, t) {}^6\text{He}}\) reaction. Phys. Lett. B 646, 222 (2007)
[65] Skaza, F., et al.: Low-lying states and structure of the exotic \({ {}^8\text{He}}\) via direct reactions on the proton. Nucl. Phys. A 788, 260 (2007)
[66] Uberseder, E., et al.: Nuclear structure beyond the neutron drip line: the lowest energy states in \({ {}^9\text{He}}\) via their \({ T = 5/2 }\) isobaric analogs in \({ {}^9\text{Li}} \). Phys. Lett. B 754, 323 (2016)
[67] Hansen, P.G., Sherrill, B.M.: Reactions and single-particle structure of nuclei near the drip lines. Nucl. Phys. A 693, 133 (2001) · doi:10.1016/S0375-9474(01)01104-6
[68] Kohley, Z., et al.: Unresolved question of the \({ {}^{10}\text{He}}\) ground state resonance. Phys. Rev. Lett. 109, 232501 (2012)
[69] Barker, F.C.: Level widths in \({ {}^9\text{He}}\) and \({ {}^{10}\text{He}} \). Nucl. Phys. A 741, 42 (2004)
[70] Voigtsberger, J., et al.: Imaging the structure of the trimer systems \({ {}^4\text{He}_3 }\) and \({ {}^3\text{He}{}^4\text{He}_2 } \). Nat. Commun. 5, 5765 (2014)
[71] Kisamori, K., et al.: Candidate resonant tetraneutron state populated by the \({ {}^4\text{He} ({}^8\text{He}, {}^8\text{Be}) }\) reaction. Phys. Rev. Lett. 116, 052501 (2016)
[72] Hiyama, E., Lazauskas, R., Carbonell, J., Kamimura, M.: Possibility of generating a 4-neutron resonance with a \({ T = 3/2 }\) isospin 3-neutron force. Phys. Rev. C 93, 044004 (2016)
[73] Shirokov, A.M., Papadimitriou, G., Mazur, A.I., Mazur, I.A., Roth, R., Vary, J.P.: Prediction for a four-neutron resonance. Phys. Rev. Lett. 117, 182502 (2016) · doi:10.1103/PhysRevLett.117.182502
[74] Deltuva, A.: Tetraneutron: rigorous continuum calculation. Phys. Lett. B 782, 238 (2018) · doi:10.1016/j.physletb.2018.05.041
[75] Aoyama, S., Myo, T., Katō, K., Ikeda, K.: The complex scaling method for many-body resonances and applications to three-body resonances. Prog. Theor. Phys. 116, 1 (2006) · doi:10.1143/PTP.116.1
[76] Myo, T., Kikuchi, Y., Masui, H., Katō, K.: Recent development of complex scaling method for many-body resonances and continua in light nuclei. Prog. Part. Nucl. Phys. 79, 1 (2014) · doi:10.1016/j.ppnp.2014.08.001
[77] Barrett, B.R., Navrátil, P., Vary, J.P.: Ab initio no core shell model. Prog. Part. Nucl. Phys. 69, 131 (2013) · doi:10.1016/j.ppnp.2012.10.003
[78] Bang, J.M., Mazur, A.I., Shirokov, A.M., Smirnov, Y.F., Zaytsev, S.A.: \({ P }\)-matrix and \({ J }\)-matrix approaches: Coulomb asymptotics in the harmonic oscillator representation of scattering theory. Ann. Phys. 280, 299 (2000) · Zbl 0974.81061
[79] Shirokov, A.M., Vary, J.P., Mazur, A.I., Weber, T.A.: Realistic nuclear Hamiltonian: Ab exitu approach. Phys. Lett. B 644, 33 (2007) · doi:10.1016/j.physletb.2006.10.066
[80] Pieper, S.C.: Can modern nuclear Hamiltonians tolerate a bound tetraneutron? Phys. Rev. Lett. 90, 252501 (2003) · doi:10.1103/PhysRevLett.90.252501
[81] Gandolfi, S., Hammer, H.W., Klos, P., Lynn, J.E., Schwenk, A.: Is a trineutron resonance lower in energy than a tetraneutron resonance? Phys. Rev. Lett. 118, 232501 (2017) · doi:10.1103/PhysRevLett.118.232501
[82] Entem, D.R., Machleidt, R.: Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral perturbation theory. Phys. Rev. C 68, 041001(R) (2003) · doi:10.1103/PhysRevC.68.041001
[83] Ekström, A., Baardsen, G., Forssén, C., Hagen, G., Hjorth-Jensen, M., Jansen, G.R., Machleidt, R., Nazarewicz, W., Papenbrock, T., Sarich, J., Wild, S.M.: Optimized chiral nucleon-nucleon interaction at next-to-next-to-leading order. Phys. Rev. Lett. 110, 192502 (2013) · doi:10.1103/PhysRevLett.110.192502
[84] Ekström, A., Jansen, G.R., Wendt, K.A., Hagen, G., Papenbrock, T., Carlsson, B.D., Forssén, C., Hjorth-Jensen, M., Navrátil, P., Nazarewicz, W.: Accurate nuclear radii and binding energies from a chiral interaction. Phys. Rev. C 91, 051301(R) (2015) · doi:10.1103/PhysRevC.91.051301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.