×

Wreath Macdonald polynomials at \(q=t\) as characters of rational Cherednik algebras. (English) Zbl 1528.16017

Let \(W=C_l \wr \mathfrak{S}_n\) be a wreath product of a cyclic group \(C_l\) and \(\overline{H}_c(W)\) the restricted rational Cherednik ablgebra at a generic parameter \(c\). Then the group algebra of \(W\) is naturally a subalgebra of \(\overline{H}_c(W)\), so that it is possible to restrict modules over \(\overline{H}_c(W)\) to representations of \(W\).
The irreducible representations \(\lambda\) of \(W\) are in bijection with the isomorphism classes of simple modules \(L(\lambda)\) of \(\overline{H}_c(W)\), and both are indexed by the \((l, n)\)-multipartitions \(\mathcal{P}(l, n)\). The article under review studies the restrictions of the simple modules \(L(\lambda)\) of \(\overline{H}_c(W)\) and their decompositions into irreducible representations of \(W\). More concretely, it establishes an explicit formula for their image \([L(\lambda)]\) in the Grothendieck group of \(\operatorname{mod} W\). This generalizes a result by I. Gordon [Bull. Lond. Math. Soc. 35, No. 3, 321–336 (2003; Zbl 1042.16017)], who has established such a formula in the case that \(W\) is a symmetric group. As in the case studied by Gordon, the question reduces to a question about the multiplicative structure on the Grothendieck group of \(\operatorname{mod} W\) which is induced by the tensor product. Hence the authors first collect the relevant results on the character theory of \(C_l \wr \mathfrak{S}_n\). Then they proceed by defining a generalization the \((t,t)\)-Kostka-Macdonald coefficients to a multipartition version \(K_{\mathbf{\lambda\mu}}(t,t)\), \(\mathbf{\lambda}, \mathbf{\mu}\in \mathcal{P}(l, n)\). They prove that with this definition \begin{align*} [L(\lambda)]=\sum_{\mu\in \mathcal{P}(l, n)}K _{\mathbf{\lambda\mu}}(t,t)[\mu], \end{align*} which generalizes the formula by Gordon for the symmetric group case. Finally, using this formula, they prove that the image of \([L(\lambda)]\) under the Frobenius character map is given by a specialization of the wreath Macdonald polynomial.

MSC:

16G99 Representation theory of associative rings and algebras
05E05 Symmetric functions and generalizations
14C05 Parametrization (Chow and Hilbert schemes)
16S80 Deformations of associative rings
16S38 Rings arising from noncommutative algebraic geometry

Citations:

Zbl 1042.16017

Software:

CHAMP

References:

[1] Bellamy, Gwyn, Phenomenological approach to algebraic geometry. Hyperplane arrangements associated to symplectic quotient singularities, Banach Center Publ., 25-45 (2018), Polish Acad. Sci. Inst. Math., Warsaw · Zbl 1439.14156
[2] Bellamy, Gwyn, Highest weight theory for finite-dimensional graded algebras with triangular decomposition, Adv. Math., 361-419 (2018) · Zbl 1464.16042 · doi:10.1016/j.aim.2018.03.011
[3] Bezrukavnikov, Roman, Wreath Macdonald polynomials and the categorical McKay correspondence, Camb. J. Math., 163-190 (2014) · Zbl 1326.14037 · doi:10.4310/CJM.2014.v2.n2.a1
[4] Cherednik, Ivan, Double affine Hecke algebras, Knizhnik-Zamolodchikov equations, and Macdonald’s operators, Internat. Math. Res. Notices, 171-180 (1992) · Zbl 0770.17004 · doi:10.1155/S1073792892000199
[5] Cherednik, Ivan, Double affine Hecke algebras and Macdonald’s conjectures, Ann. of Math. (2), 191-216 (1995) · Zbl 0822.33008 · doi:10.2307/2118632
[6] Chriss, Neil, Representation theory and complex geometry, x+495 pp. (1997), Birkh\"{a}user Boston, Inc., Boston, MA · Zbl 0879.22001
[7] Etingof, Pavel, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math., 243-348 (2002) · Zbl 1061.16032 · doi:10.1007/s002220100171
[8] Foulkes, H. O., Permutations (Actes Colloq., Univ. Ren\'{e}-Descartes, Paris, 1972). A survey of some combinatorial aspects of symmetric functions, 79-92 (1974), Gauthier-Villars, Paris · Zbl 0282.05004
[9] Fulton, William, Young tableaux, London Mathematical Society Student Texts, x+260 pp. (1997), Cambridge University Press, Cambridge · Zbl 0878.14034
[10] Gordon, Iain, Baby Verma modules for rational Cherednik algebras, Bull. London Math. Soc., 321-336 (2003) · Zbl 1042.16017 · doi:10.1112/S0024609303001978
[11] Griffeth, Stephen, Macdonald polynomials as characters of Cherednik algebra modules, Math. Z., 317-323 (2014) · Zbl 1294.05158 · doi:10.1007/s00209-013-1257-3
[12] Haiman, Mark, Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc., 941-1006 (2001) · Zbl 1009.14001 · doi:10.1090/S0894-0347-01-00373-3
[13] Haiman, Mark, Symmetric functions 2001: surveys of developments and perspectives. Notes on Macdonald polynomials and the geometry of Hilbert schemes, NATO Sci. Ser. II Math. Phys. Chem., 1-64 (2002), Kluwer Acad. Publ., Dordrecht · Zbl 1057.14011 · doi:10.1007/978-94-010-0524-1\_1
[14] M. Haiman, Combinatorics, symmetric functions, and Hilbert schemes, Current developments in mathematics, 2002, Int. Press, Somerville, MA, 2003, pp. 39-111. 2051783 · Zbl 1053.05118
[15] Holmes, Randall R., Brauer-type reciprocity for a class of graded associative algebras, J. Algebra, 117-126 (1991) · Zbl 0749.16024 · doi:10.1016/0021-8693(91)90132-R
[16] Kostka, C., Ueber den Zusammenhang zwischen einigen Formen von symmetrischen Functionen, J. Reine Angew. Math., 89-123 (1882) · JFM 14.0112.02 · doi:10.1515/crll.1882.93.89
[17] Lascoux, Alain, Sur une conjecture de H. O. Foulkes, C. R. Acad. Sci. Paris S\'{e}r. A-B, A323-A324 (1978) · Zbl 0374.20010
[18] Loehr, Nicholas A., A computational and combinatorial expos\'{e} of plethystic calculus, J. Algebraic Combin., 163-198 (2011) · Zbl 1229.05275 · doi:10.1007/s10801-010-0238-4
[19] I. G. Macdonald, A new class of symmetric functions, Actes du 20e S\'eminaire Lotharingien 372/S-20 (1988), 131-171. · Zbl 0962.05507
[20] Macdonald, I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, x+475 pp. (1995), The Clarendon Press, Oxford University Press, New York · Zbl 0824.05059
[21] Nelsen, Kendra, Surveys in combinatorics, 2003 (Bangor). Kostka-Foulkes polynomials and Macdonald spherical functions, London Math. Soc. Lecture Note Ser., 325-370 (2003), Cambridge Univ. Press, Cambridge · Zbl 1036.05049
[22] Poirier, St\'{e}phane, Cycle type and descent set in wreath products, Discrete Math.. Proceedings of the 7th Conference on Formal Power Series and Algebraic Combinatorics (Noisy-le-Grand, 1995), 315-343 (1998) · Zbl 0892.05003 · doi:10.1016/S0012-365X(97)00123-4
[23] Specht, Wilhelm, Eine Verallgemeinerung der Permutationsgruppen, Math. Z., 321-341 (1933) · Zbl 0007.14904 · doi:10.1007/BF01474578
[24] Steinberg, Robert, On a theorem of Pittie, Topology, 173-177 (1975) · Zbl 0318.22010 · doi:10.1016/0040-9383(75)90025-7
[25] Stembridge, John R., On the eigenvalues of representations of reflection groups and wreath products, Pacific J. Math., 353-396 (1989) · Zbl 0641.20011
[26] Thiel, U., Champ: a Cherednik algebra Magma package, LMS J. Comput. Math., 266-307 (2015) · Zbl 1319.16036 · doi:10.1112/S1461157015000054
[27] Thiel, Ulrich, Decomposition matrices are generically trivial, Int. Math. Res. Not. IMRN, 2157-2196 (2016) · Zbl 1404.16013 · doi:10.1093/imrn/rnv204
[28] Thiel, Ulrich, Representation theory-current trends and perspectives. Restricted rational Cherednik algebras, EMS Ser. Congr. Rep., 681-745 (2017), Eur. Math. Soc., Z\"{u}rich · Zbl 1377.16022
[29] Thiel, Ulrich, Blocks in flat families of finite-dimensional algebras, Pacific J. Math., 191-240 (2018) · Zbl 1442.16013 · doi:10.2140/pjm.2018.295.191
[30] Joshua Jeishing Wen, Wreath Macdonald polynomials as eigenstates, preprint 1904.05015v4, 2019.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.