×

Weakly Schreier extensions for general algebras. (English) Zbl 1539.18012

Summary: Weakly Schreier split extensions are a reasonably large, yet well-understood class of monoid extensions, which generalise some aspects of split extensions of groups. This short note provides a way to define and study similar classes of split extensions in general algebraic structures (parameterised by a term \(\theta\)). These generalise weakly Schreier extensions of monoids, as well as general extensions of semi-abelian varieties (using the \(\theta\) appearing in their syntactic characterisation). Restricting again to the case of monoids, a different choice of \(\theta\) leads to a new class of monoid extensions, more general than the weakly Schreier split extensions.

MSC:

18G50 Nonabelian homological algebra (category-theoretic aspects)
08C05 Categories of algebras
20M50 Connections of semigroups with homological algebra and category theory

References:

[1] Bourn, D.: Partial Mal’tsevness and partial protomodularity. arXiv:1507.02886v1 (2015)
[2] Bourn, D.; Janelidze, G., Protomodularity, descent, and semidirect products, Theory Appl. Categ., 4, 2, 37-46 (1998) · Zbl 0890.18003
[3] Bourn, D.; Janelidze, G., Characterization of protomodular varieties of universal algebras, Theory Appl. Categ., 11, 6, 143-447 (2003) · Zbl 1021.08003
[4] Bourn, D.; Martins-Ferreira, N.; Montoli, A.; Sobral, M., Schreier split epimorphisms between monoids, Semigroup Forum, 88, 3, 739-752 (2014) · Zbl 1306.20067 · doi:10.1007/s00233-014-9571-6
[5] Bourn, D.; Martins-Ferreira, N.; Montoli, A.; Sobral, M., Monoids and pointed \(S\)-protomodular categories, Homol. Homotopy Appl., 18, 1, 151-172 (2016) · Zbl 1350.18019 · doi:10.4310/HHA.2016.v18.n1.a9
[6] Clementino, MM; Montoli, A.; Sousa, L., Semidirect products of (topological) semi-abelian algebras, J. Pure Appl. Algebra, 219, 1, 183-197 (2015) · Zbl 1304.18010 · doi:10.1016/j.jpaa.2014.04.019
[7] Faul, PF, A characterization of weakly Schreier extensions of monoids, J. Pure Appl. Algebra, 225, 2 (2021) · Zbl 1456.18010 · doi:10.1016/j.jpaa.2020.106489
[8] Faul, PF, \( \lambda \)-semidirect products of inverse monoids are weakly Schreier extensions, Semigroup Forum, 102, 2, 422-436 (2021) · Zbl 1537.20137 · doi:10.1007/s00233-020-10131-4
[9] Faul, PF, A survey of Schreier-type extensions of monoids, Semigroup Forum, 104, 3, 519-539 (2022) · Zbl 1514.20225 · doi:10.1007/s00233-022-10265-7
[10] Gorenstein, D., Finite Simple Groups: An Introduction to Their Classification (2013), New York: Springer, New York · Zbl 0483.20008
[11] Gran, M.; Janelidze, G.; Sobral, M., Split extensions and semidirect products of unitary magmas, Comment. Math. Univ. Carolin., 60, 4, 509-527 (2019) · Zbl 1524.20070
[12] Gray, JRA; Martins-Ferreira, N., On algebraic and more general categories whose split epimorphisms have underlying product projections, Appl. Categ. Struct., 23, 3, 429-446 (2015) · Zbl 1330.18006 · doi:10.1007/s10485-013-9336-5
[13] Johnstone, P.; Janelidze, G.; Pareigis, B.; Tholen, W., A note on the semiabelian variety of Heyting semilattices, Galois Theory, Hopf Algebras, and Semiabelian Categories, Fields Institute Communications, 317-318 (2004), American Mathematical Society · Zbl 1079.08006
[14] Martins-Ferreira, N.: Semi-biproducts in monoids. arXiv:2002.05985 (2020)
[15] Martins-Ferreira, N.: On semibiproducts of magmas and semigroups. arXiv:2208.12704 (2022)
[16] Martins-Ferreira, N., Pointed semibiproducts of monoids, Theory Appl. Categ., 39, 6, 172-185 (2023) · Zbl 1514.18014
[17] Martins-Ferreira, N.; Montoli, A.; Sobral, M., Semidirect products and crossed modules in monoids with operations, J. Pure Appl. Algebra, 217, 2, 334-347 (2013) · Zbl 1277.18016 · doi:10.1016/j.jpaa.2012.06.022
[18] Patchkoria, A., Crossed semimodules and Schreier internal categories in the category of monoids, Georgian Math. J., 5, 6, 575-581 (1998) · Zbl 0915.18002 · doi:10.1515/GMJ.1998.575
[19] Ursini, A., On subtractive varieties, I. Algebra Univ., 31, 204-222 (1994) · Zbl 0799.08010 · doi:10.1007/BF01236518
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.