×

Modelling bacterial chemotaxis for indirectly binding attractants. (English) Zbl 1429.92041

Summary: In bacterial chemotaxis, chemoattractant molecules may bind either directly or indirectly with receptors within the cell periplasmic space. The indirect binding mechanism, which involves an intermediate periplasmic binding protein, has been reported to increase sensitivity to dilute attractant concentrations as well as range of response. Current mathematical models for bacterial chemotaxis at the population scale do not appear to take the periplasmic binding protein (BP) concentration or the indirect binding mechanics into account. We formulate an indirect binding extension to the existing Rivero equation for chemotactic velocity based on fundamental reversible enzyme kinetics. The formulated indirect binding expression accounts for the periplasmic BP concentration and the dissociation constants for binding between attractant and periplasmic BP, as well as between BP and chemoreceptor. We validate the indirect-binding model using capillary assay simulations of the chemotactic responses of E. coli to the indirectly-binding attractants maltose and AI-2. The predicted response agrees well with experimental data from a number of maltose capillary assay studies conducted in previous literature. The model is also able to achieve good agreement with AI-2 capillary assay data of one study out of two tested. The chemotactic response of E. coli towards AI-2 appears to be of higher complexity due to reports of variable periplasmic BP concentration as well as the low concentration of periplasmic BP relative to the total receptor concentration. Our current model is thus suitable for indirect binding chemotactic response systems with constant periplasmic BP concentration that is significantly larger than the total receptor concentration, such as the response of E. coli towards maltose. Further considerations may be taken into account to model the chemotactic response towards AI-2 with greater accuracy.

MSC:

92C17 Cell movement (chemotaxis, etc.)
92C70 Microbiology
35Q92 PDEs in connection with biology, chemistry and other natural sciences
92C37 Cell biology

Software:

AgentCell
Full Text: DOI

References:

[1] Adler, J., Chemotaxis in bacteria, Science, 153, 3737, 708-716 (1966)
[2] Adler, J., A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli, J. Gen. Microbiol., 74, 1, 77-91 (1973)
[3] Ahmed, T.; Shimizu, T.; Stocker, R., Bacterial chemotaxis in linear and nonlinear steady microfluidic gradients, Nano Lett., 10, 9, 3379-3385 (2010)
[4] Ahmed, T.; Stocker, R., Experimental verification of the behavioral foundation of bacterial transport parameters using microfluidics, Biophys. J., 95, 9, 4481-4493 (2008)
[5] Alt, W., Biased random walk models for chemotaxis and related diffusion approximations, J. Math. Biol., 9, 2, 147-177 (1980) · Zbl 0434.92001
[6] Ames, G. F., Bacterial periplasmic transport systems: structure, mechanism, and evolution, Annu. Rev. Biochem., 55, 1, 397-425 (1986)
[7] Anderson, J. K., Chemorepulsion from the quorum signal autoinducer-2 promotes helicobacter pylori biofilm dispersal, MBio, 6, 4, e00379 (2015)
[8] Berg, H.C.E. coli in motion.2004; Available from:http://site.ebrary.com/id/10217363.
[9] Berg, J.M., J.L. Tymoczko, and L. Stryer, Biochemistry, 5th Edition. 2002: W.H. Freeman.
[10] Brosilow, B. J., Numerical solution of transport equations for bacterial chemotaxis: effect of discretization of directional motion, SIAM J. Appl. Math., 56, 6, 1639-1663 (1996) · Zbl 0863.60077
[11] Brown, D. A.; Berg, H. C., Temporal stimulation of chemotaxis in Escherichia coli, Proc. Natl. Acad. Sci. U S A, 71, 4, 1388-1392 (1974)
[12] Clarke, S.; Koshland, D. E., Membrane receptors for aspartate and serine in bacterial chemotaxis, J. Biol. Chem., 254, 19, 9695-9702 (1979)
[13] Davidson, A. L.; Shuman, H. A.; Nikaido, H., Mechanism of maltose transport in escherichia coli: transmembrane signaling by periplasmic binding proteins, Proc. Natl. Acad. Sci. U S A, 89, 6, 2360-2364 (1992)
[14] Dietzel, I.; Kolb, V.; Boos, W., Pole cap formation in Escherichia coli following induction of the maltose-binding protein, Arch. Microbiol., 118, 2, 207-218 (1978)
[15] Duplay, P., Silent and functional changes in the periplasmic maltose-binding protein of Escherichia coli K12. I. Transport of maltose, J. Mol. Biol., 194, 4, 663-673 (1987)
[16] Duplay, P.; Szmelcman, S., Silent and functional changes in the periplasmic maltose-binding protein of Escherichia coli K12. II. Chemotaxis towards maltose, J. Mol. Biol., 194, 4, 675-678 (1987)
[17] Emonet, T., AgentCell: a digital single-cell assay for bacterial chemotaxis, Bioinformatics, 21, 11, 2714-2721 (2005)
[18] Ford, R. M., Measurement of bacterial random motility and chemotaxis coefficients: I. Stopped-flow diffusion chamber assay, Biotechnol. Bioeng., 37, 7, 647-660 (1991)
[19] Ford, R. M.; Lauffenburger, D. A., Measurement of bacterial random motility and chemotaxis coefficients: II. Application of single-cell-based mathematical model, Biotechnol. Bioeng., 37, 7, 661-672 (1991)
[20] Ford, R. M.; Lauffenburger, D. A., Analysis of chemotactic bacterial distributions in population migration assays using a mathematical model applicable to steep or shallow attractant gradients, Bull. Math. Biol., 53, 5, 721-749 (1991) · Zbl 0729.92029
[21] Gardina, P., Aspartate and maltose-binding protein interact with adjacent sites in the TAR chemotactic signal transducer of Escherichia coli, J. Bacteriol., 174, 5, 1528-1536 (1992)
[22] Glekas, G. D., The Bacillus subtilis chemoreceptor MCPC senses multiple ligands using two discrete mechanisms, J. Biol. Chem., 287, 47, 39412-39418 (2012)
[23] Gorochowski, T. E., BSim: an agent-based tool for modeling bacterial populations in systems and synthetic biology, PLoS ONE, 7, 8, e42790 (2012)
[24] Graham, L. L.; Beveridge, T. J.; Nanninga, N., Periplasmic space and the concept of the periplasm, Trends Biochem. Sci., 16, 9, 328-329 (1991)
[25] Grebe, T. W.; Stock, J., Bacterial chemotaxis: the five sensors of a bacterium, Curr. Biol., 8, 5, R154-R157 (1998)
[26] Harayama, S.; Palva, E. T.; Hazelbauer, G. L., Transposon-insertion mutants of Escherichia coli K12 defective in a component common to galactose and ribose chemotaxis, Mol. Gen. Genet., 171, 2, 193-203 (1979)
[27] Hazelbauer, G. L., Maltose chemoreceptor of Escherichia coli, J. Bacteriol., 122, 1, 206-214 (1975)
[28] Hegde, M., Chemotaxis to the quorum-sensing signal AI-2 requires the TSR chemoreceptor and the periplasmic LSRB AI-2-binding protein, J. Bacteriol., 193, 3, 768-773 (2011)
[29] Hillen, T.; Painter, K. J., A user’s guide to PDE models for chemotaxis, J. Math. Biol., 58, 1-2, 183-217 (2009) · Zbl 1161.92003
[30] Jani, S., Chemotaxis to self-generated AI-2 promotes biofilm formation in Escherichia coli, Microbiology, 163, 12, 1778-1790 (2017)
[31] Kehres, D. G., A kinetic model for binding protein-mediated arabinose transport, Protein Sci., 1, 12, 1661-1665 (1992)
[32] Keller, E. F.; Segel, L. A., Traveling bands of chemotactic bacteria: a theoretical analysis, J. Theor. Biol., 30, 2, 235-248 (1971) · Zbl 1170.92308
[33] Keller, E. F.; Segel, L. A., Model for chemotaxis, J. Theor. Biol., 30, 2, 225-234 (1971) · Zbl 1170.92307
[34] Kellermann, O.; Szmelcman, S., Active transport of maltose in Escherichia coli K12. Involvement of a “periplasmic” maltose binding protein, Eur. J. Biochem., 47, 1, 139-149 (1974)
[35] Koh, J. B.Y.; Shen, X.; Marcos, M., Theoretical modeling in microscale locomotion, Microfluid. Nanofluidics, 20, 7, 98 (2016)
[36] Koman, A.; Harayama, S.; Hazelbauer, G. L., Relation of chemotactic response to the amount of receptor: evidence for different efficiencies of signal transduction, J. Bacteriol., 138, 3, 739-747 (1979)
[37] Lewus, P.; Ford, R. M., Quantification of random motility and chemotaxis bacterial transport coefficients using individual-cell and population-scale assays, Biotechnol. Bioeng., 75, 3, 292-304 (2001)
[38] Li, J., A stochastic model of Escherichia coli AI-2 quorum signal circuit reveals alternative synthesis pathways, Mol. Syst. Biol., 2, 1, 67 (2006)
[39] Long, Z., Cell-cell communication enhances bacterial chemotaxis toward external attractants, Sci. Rep., 7, 1, 12855 (2017)
[40] Manson, M. D., Dependence of maltose transport and chemotaxis on the amount of maltose-binding protein, J. Biol. Chem., 260, 17, 9727-9733 (1985)
[41] Manson, M. D., Peptide chemotaxis in E. coli involves the TAP signal transducer and the dipeptide permease, Nature, 321, 6067, 253-256 (1986)
[42] Mansour, M. B.A., Traveling wave solutions of a nonlinear reaction-diffusion-chemotaxis model for bacterial pattern formation, Appl. Math. Model., 32, 2, 240-247 (2008) · Zbl 1134.35067
[43] Marcos, Marcos, Bacterial rheotaxis, Proc. Natl. Acad. Sci. U. S. A., 109, 13, 4780-4785 (2012)
[44] Mesibov, R.; Ordal, G. W.; Adler, J., The range of attractant concentrations for bacterial chemotaxis and the threshold and size of response over this range. Weber law and related phenomena, J. Gen. Physiol., 62, 2, 203-223 (1973)
[45] Miller, J., An agent-based model of signal transduction in bacterial chemotaxis, PLoS ONE, 5, 5, e9454 (2010)
[46] Neumann, S., Differences in signalling by directly and indirectly binding ligands in bacterial chemotaxis, EMBO J., 29, 20, 3484-3495 (2010)
[47] Ortega, A.; Zhulin, I. B.; Krell, T., Sensory repertoire of bacterial chemoreceptors, Microbiol. Mol. Biol. Rev., 81, 4 (2017)
[48] Othmer, H. G.; Dunbar, S. R.; Alt, W., Models of dispersal in biological systems, J. Math. Biol., 26, 3, 263-298 (1988) · Zbl 0713.92018
[49] Paster, E.; Ryu, W. S., The thermal impulse response of Escherichia coli, Proc. Natl. Acad. Sci. U. S. A., 105, 14, 5373-5377 (2008)
[50] Quan, D. N., Quorum sensing desynchronization leads to bimodality and patterned behaviors, PLoS Comput. Biol., 12, 4, Article e1004781 pp. (2016)
[51] Rader, B. A., Helicobacter pylori perceives the quorum-sensing molecule AI-2 as a chemorepellent via the chemoreceptor TLPB, Microbiology, 157, Pt 9, 2445-2455 (2011)
[52] Rico-Jimenez, M., Two different mechanisms mediate chemotaxis to inorganic phosphate in Pseudomonas aeruginosa, Sci. Rep., 6, 1, 28967 (2016)
[53] Rivero, M. A., Transport models for chemotactic cell populations based on individual cell behavior, Chem. Eng. Sci., 44, 12, 2881-2897 (1989)
[54] Schwartz, M., Further studies on the binding of maltose to the maltose-binding protein of Escherichia coli, Eur. J. Biochem., 71, 1, 167-170 (1976)
[55] Segel, L. A., Incorporation of receptor kinetics into a model for bacterial chemotaxis, J. Theor. Biol., 57, 1, 23-42 (1976)
[56] Sourjik, V.; Wingreen, N. S., Responding to chemical gradients: bacterial chemotaxis, Curr. Opin. Cell Biol., 24, 2, 262-268 (2012)
[57] Szmelcman, S., Maltose transport in Escherichia coli K12. A comparison of transport kinetics in wild-type and lamba-Resistant mutants with the dissociation constants of the maltose-binding protein as measured by fluorescence quenching, Eur. J. Biochem., 65, 1, 13-19 (1976)
[58] Taga, M. E.; Xavier, K. B., Methods for analysis of bacterial autoinducer-2 production, Curr. Protoc. Microbiol., 1, 1 (2011), Chapterp. Unit1C 1
[59] Tchepmo Djomegni, P. M.; Govinder, K. S., Generalized travelling wave solutions for hyperbolic chemotaxis PDEs, Appl. Math. Model., 40, 9-10, 5672-5688 (2016) · Zbl 1465.35379
[60] Tindall, M. J., Overview of mathematical approaches used to model bacterial chemotaxis II: bacterial populations, Bull. Math. Biol., 70, 6, 1570-1607 (2008) · Zbl 1209.92006
[61] Tindall, M. J., Overview of mathematical approaches used to model bacterial chemotaxis I: the single cell, Bull. Math. Biol., 70, 6, 1525-1569 (2008) · Zbl 1166.92008
[62] Torcato, I. M., Identification of novel autoinducer-2 receptors in Clostridia reveals plasticity in the binding site of the LSRB receptor family, J. Biol. Chem., 294, 12, 4450-4463 (2019)
[63] Van Wielink, J. E.; Duine, J. A., How big is the periplasmic space?, Trends Biochem. Sci., 15, 4, 136-137 (1990)
[64] Wadhams, G. H.; Armitage, J. P., Making sense of it all: bacterial chemotaxis, Nat. Rev. Mol. Cell Biol., 5, 12, 1024-1037 (2004)
[65] Xavier, K. B.; Bassler, B. L., Regulation of uptake and processing of the quorum-sensing autoinducer AI-2 in Escherichia coli, J Bacteriol, 187, 1, 238-248 (2005)
[66] Zargar, A., Rational design of ‘controller cells’ to manipulate protein and phenotype expression, Metab. Eng., 30, 61-68 (2015)
[67] Zhang, Y., Maltose-binding protein containing an interdomain disulfide bridge confers a dominant-negative phenotype for transport and chemotaxis, J. Biol. Chem., 271, 30, 17881-17889 (1996)
[68] Zhang, Y., Model of maltose-binding protein/chemoreceptor complex supports intrasubunit signaling mechanism, Proc. Natl. Acad. Sci. U. S. A., 96, 3, 939-944 (1999)
[69] Zhu, J.; Pei, D., A LUXP-based fluorescent sensor for bacterial autoinducer II, ACS Chem. Biol., 3, 2, 110-119 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.