×

Diffusion transients in convection rolls. (English) Zbl 1461.76016

Summary: We numerically investigated the phenomenon of non-Gaussian normal diffusion of a Brownian colloidal particle in a periodic array of planar counter-rotating convection rolls. At high Péclet numbers, normal diffusion is observed to occur at all times with non-Gaussian transient statistics. This effect vanishes with increasing the observation time. The displacement distributions decay either slower or faster than a Gaussian function, depending on the flow parameters. The sign of their excess kurtosis is related to the difference between two dynamical time scales, namely, the mean exit time of the particle out of a convection roll and its circulation period inside it.

MSC:

76A05 Non-Newtonian fluids
76T20 Suspensions
76R50 Diffusion

Keywords:

colloids
Full Text: DOI

References:

[1] Bhattacharya, S., Sharma, D.K., Saurabh, S., De, S., Sain, A., Nandi, A. & Chowdhury, A.2013Plasticization of poly(vinylpyrrolidone) thin films under ambient humidity: insight from single-molecule tracer diffusion dynamics. J. Phys. Chem. B117, 7771-7782.
[2] Chandrasekhar, S.1967Hydrodynamic and Hydromagnetic Stability. Oxford University Press.
[3] Chaudhuri, P., Berthier, P. & Kob, W.2007Universal nature of particle displacements close to glass and jamming transitions. Phys. Rev. Lett.99, 060604.
[4] Childress, S.1979Alpha-effect in flux ropes and sheets. Phys. Earth Planet. Inter.20, 172-180.
[5] Chubynsky, M.V. & Slater, G.W.2014Diffusing diffusivity: a model for anomalous, yet Brownian, diffusion. Phys. Rev. Lett.113, 098302.
[6] Cromer, N.O.1995Many oscillations of a rigid rod. Am. J. Phys.63, 112-121.
[7] Eaves, J.D. & Reichman, D.R.2009Spatial dimension and the dynamics of supercooled liquids. Proc. Natl Acad. Sci. USA106, 15171-15175.
[8] Gardiner, C.2009Stochastic Methods: A Handbook for the Natural and Social Sciences. Springer. · Zbl 1181.60001
[9] Ghosh, S.K., Cherstvy, A.G., Grebenkov, D.S. & Metzler, R.2016Anomalous, non-Gaussian tracer diffusion in crowded two-dimensional environments. New J. Phys.18, 013027.
[10] Gradshteyn, I.S. & Ryzhik, I.M.2007Table of Integrals, Series, and Products, 7th edn. Academic Press. · Zbl 1208.65001
[11] Guan, J., Wang, B. & Granick, S.2014Even hard-sphere colloidal suspensions display Fickian yet non-Gaussian diffusion. ACS Nano8, 3331-3336.
[12] He, W., Song, H., Su, Y., Geng, L., Ackerson, B.J., Peng, H.B. & Tong, P.2016Dynamic heterogeneity and non-Gaussian statistics for acetylcholine receptors on live cell membrane. Nat. Commun.7, 11701.
[13] Kegel, W.K. & Van Blaaderen, A.2000Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions. Science287, 290-293.
[14] Kendall, M.G. & Stuart, A.1976The Advanced Theory of Statistics, 3rd edn, vol. 1. Griffin. · Zbl 0361.62001
[15] Kim, J., Kim, C. & Sung, B.J.2013Simulation study of seemingly Fickian but heterogeneous dynamics of two dimensional colloids. Phys. Rev. Lett.110, 047801.
[16] Kirby, B.J.2010Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. Cambridge University Press. · Zbl 1283.76002
[17] Kloeden, P.E. & Platen, E.1992Numerical Solution of Stochastic Differential Equations. Springer. · Zbl 0752.60043
[18] Kwon, G., Sung, B.J. & Yethiraj, A.2014Dynamics in crowded environments: is non-Gaussian Brownian diffusion normal?J. Phys. Chem. B118, 8128-8134.
[19] Leptos, K.C., Guasto, J.S., Gollub, J.P., Pesci, A.I. & Goldstein, R.E.2009Dynamics of enhanced tracer diffusion in suspensions of swimming eukaryotic microorganisms. Phys. Rev. Lett.103, 198103.
[20] Li, Y., Li, L., Marchesoni, F., Debnath, D. & Ghosh, P.K.2020Active diffusion in convection rolls. Phys. Rev. Res.2, 013250.
[21] Li, Y., Marchesoni, F., Debnath, D. & Ghosh, P.K.2019Non-Gaussian normal diffusion in a fluctuating corrugated channel. Phys. Rev. Res.1, 033003.
[22] Manikantan, H. & Saintillan, D.2013Subdiffusive transport of fluctuating elastic filaments in cellular flows. Phys. Fluids25, 073603.
[23] Moffatt, H.K., Zaslavsky, G.M., Comte, P. & Tabor, M. (Eds.) 1992Topological Aspects of the Dynamics of Fluids and Plasmas. Springer. · Zbl 0777.00043
[24] Rosenbluth, M.N., Berk, H.L., Doxas, I. & Horton, W.1987Effective diffusion in laminar convective flows. Phys. Fluids30, 2636-2647. · Zbl 0636.76089
[25] Sarracino, A., Cecconi, F., Puglisi, A. & Vulpiani, A.2016Nonlinear response of inertial tracers in steady laminar flows: differential and absolute negative mobility. Phys. Rev. Lett.117, 174501.
[26] Shraiman, B.I.1987Diffusive transport in a Rayleigh-Bénard convection cell. Phys. Rev. A36, 261-267.
[27] Solomon, T.H. & Gollub, J.P.1988Chaotic particle transport in time-dependent Rayleigh-Bénard convection. Phys. Rev. A38, 6280-6286.
[28] Solomon, T.H. & Mezić, I.2003Uniform resonant chaotic mixing in fluid flows. Nature425, 376-380.
[29] Soward, A.M.1987Fast dynamo action in a steady flow. J. Fluid Mech.180, 267-295. · Zbl 0637.76122
[30] Tabeling, P.2002Two-dimensional turbulence: a physicist approach. Phys. Rep.362, 1-62. · Zbl 1001.76041
[31] Torney, C. & Neufeld, Z.2007Transport and aggregation of self-propelled particles in fluid flows. Phys. Rev. Lett.99, 078101.
[32] Wang, B., Anthony, S.M., Bae, S.C. & Granick, S.2009Anomalous yet Brownian. Proc. Natl Acad. Sci. USA106, 15160-15164.
[33] Wang, B., Kuo, J., Bae, C. & Granick, S.2012When Brownian diffusion is not Gaussian. Nat. Mater.11, 481-485.
[34] Weeks, E.R., Crocker, J.C., Levitt, A.C., Schofield, A. & Weitz, D.A.2000Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science287, 627-631.
[35] Weiss, N.O.1966The expulsion of magnetic flux by eddies. Proc. R. Soc. Lond.A293, 310-328.
[36] Yin, Q., Li, Y., Marchesoni, F., Debnath, D. & Ghosh, P.K.2021Excess diffusion of a driven colloidal particle in a convection array. Chin. Phys. Lett. (to be published).
[37] Young, W., Pumir, A. & Pomeau, Y.1989Anomalous diffusion of tracer in convection rolls. Phys. Fluids A1, 462-469. · Zbl 0659.76097
[38] Young, Y.-N. & Shelley, M.J.2007Stretch-coil transition and transport of fibers in cellular flows. Phys. Rev. Lett.99, 058303.
[39] Zheng, X., Ten Hagen, B., Kaiser, A., Wu, M., Cui, H., Silber-Li, Z. & Löwen, H.2013Non-Gaussian statistics for the motion of self-propelled Janus particles: experiment versus theory. Phys. Rev. E88, 032304.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.