×

Image segmentation via Fischer-Burmeister total variation and thresholding. (English) Zbl 1499.94015

Summary: Image segmentation is a significant problem in image processing. In this paper, we propose a new two-stage scheme for segmentation based on the Fischer-Burmeister total variation (FBTV). The first stage of our method is to calculate a smooth solution from the FBTV Mumford-Shah model. Furthermore, we design a new difference of convex algorithm (DCA) with the semi-proximal alternating direction method of multipliers (sPADMM) iteration. In the second stage, we make use of the smooth solution and the K-means method to obtain the segmentation result. To simulate images more accurately, a useful operator is introduced, which enables the proposed model to segment not only the noisy or blurry images but the images with missing pixels well. Experiments demonstrate the proposed method produces more preferable results comparing with some state-of-the-art methods, especially on the images with missing pixels.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
65K10 Numerical optimization and variational techniques
68U10 Computing methodologies for image processing
Full Text: DOI

References:

[1] Q. GE, L. XIAO, AND Z. H. WEI, Active contour model for simultaneous MR image segmentation and denoising, Digital Signal Process., 23(4) (2013), pp. 1186-1196.
[2] P. RUIZ, N. P. DE LA BLANCA, R. MOLINA, AND A. K. KATSAGGELOS, Bayesian clas-sification and active learning using lp-priors. application to image segmentation, in: 2014 22nd European Signal Processing Conference (EUSIPCO), IEEE (2014), pp. 1183-1187.
[3] Y. LIU, C. HE, AND Y. WU, Variational model with kernel metric-based data term for noisy image segmentation, Digital Signal Process., 78 (2018), pp. 42-55.
[4] F. FUENTES-HURTADO, V. NARANJO, J. A. DIEGO-MAS, AND M. ALCANIZ, A hybrid method for accurate iris segmentation on at-a-distance visible-wavelength images, Eurasip J. Im-age Video Process., 1 (2019), 75.
[5] C. WU, AND Z. KANG, Robust entropy-based symmetric regularized picture fuzzy clustering for image segmentation, Digital Signal Process., (2020), 102905.
[6] J. WANG, Z. XU, Z. PAN, W. WEI, AND G. WANG, The vese-chan model without redundant pa-rameter estimation for multiphase image segmentation, Eurasip J. Image Video Process., 1 (2020), pp. 1-17.
[7] S. LUO, X.-C. TAI, AND Y. WANG, Convex shape representation with binary labels for image segmentation: models and fast algorithms, (2020), arXiv:2002.09600.
[8] D. MUMFORD, AND J. SHAH, Optimal approximations by piecewise smooth functions and asso-ciated variational problems, Commun. Pure Appl. Math., 42(5) (1989), pp. 577-685. · Zbl 0691.49036
[9] A. CHAMBOLLE, Finite-differences discretizations of the mumford-shah functional, ESAIM: Math. Model. Numer. Anal., 33(2) (1999), pp. 261-288. · Zbl 0947.65076
[10] T. F. CHAN, AND L. A. VESE, A level set algorithm for minimizing the mumford-shah functional in image processing, in: Proceedings IEEEWorkshop on Variational and Level Set Methods in Computer Vision, IEEE (2001), pp. 161-168.
[11] S. ESEDOG, AND Y.-H. R. TSAI ET AL., Threshold dynamics for the piecewise constant Mum-ford-Shah functional, J. Comput. Phys., 211(1) (2006), pp. 367-384. · Zbl 1086.65522
[12] M. STORATH, AND A. WEINMANN, Fast partitioning of vector-valued images, SIAM J. Imag. Sci., 7(3) (2014), pp. 1826-1852. · Zbl 1308.94023
[13] C. LIU, M. K.-P. NG, AND T. ZENG, Weighted variational model for selective image segmentation with application to medical images, Pattern Recognition, 76 (2018), pp. 367-379.
[14] G. AUBERT, L. BLANC-FERAUD, AND R. March, An approximation of the Mumford-Shah energy by a family of discrete edge-preserving functionals, Nonlinear Anal. Theory Methods Appl., 64(9) (2006), pp. 1908-1930. · Zbl 1100.49013
[15] M. GENCTAV, AND S. TARI, Multi-parameter Mumford-Shah segmentation, Res. Shape Anal., (2018), pp. 133-141. · Zbl 1421.94007
[16] Y. LI, C.WU, AND Y. DUAN, The TV p regularized Mumford-Shah model for image labeling and segmentation, IEEE Trans. Image Process., 29 (2020), pp. 7061-7075. · Zbl 07586383
[17] M. MORINI, AND M. NEGRI, Mumford-shah functional as γ-limit of discrete perona-malik ener-gies, Math. Models Methods Appl. Sci., 13(6) (2003), pp. 785-805. · Zbl 1045.49022
[18] T. F. CHAN, AND L. A. VESE, Active contours without edges, IEEE Trans. Image Process., 10(2) (2001), pp. 266-277. · Zbl 1039.68779
[19] H. WANG, T.-Z. HUANG, AND J. LIU, An efficient operator splitting method for local region chan-vese model, Eurasip J. Adv. Signal Process., 2013 (2013), pp. 1-12.
[20] E. BAE, X.-C. TAI, AND Z. WEI, Augmented lagrangian method for an Euler’s elastica based seg-mentation model that promotes convex contours, American Institute of Mathematical Sciences, 11(1) (2017), pp. 1-23. · Zbl 1416.94013
[21] X. CAI, R. CHAN, AND T. ZENG, A two-stage image segmentation method using a convex variant of the Mumford-Shah model and thresholding, SIAM J. Imag. Sci., 6(1) (2013), pp. 368-390. · Zbl 1283.52011
[22] H. LEVINE, Partial differential equations, American Mathematical Society, 1997. · Zbl 0902.35001
[23] R. CHAN, H. YANG, AND T. ZENG, A two-stage image segmentation method for blurry images with poisson or multiplicative gamma noise, SIAM J. Imag. Sci., 7(1) (2014), pp. 98-127. · Zbl 1297.65066
[24] Y. DUAN, W. HUANG, J. ZHOU, H. CHANG, AND T. ZENG, A two-stage image segmentation method using euler’s elastica regularized mumford-shah model, in: 22nd International Conference on Pattern Recognition, IEEE, 2014, pp. 118-123.
[25] Z. ZHI, Y. SUN, AND Z.-F. PANG, Two-stage image segmentation scheme based on inexact alter-nating direction method, Numer. Math. Theory Methods Appl., 9(3) (2016), pp. 451-469. · Zbl 1389.68172
[26] Q. MA, J. PENG, AND D. KONG, Image segmentation via mean curvature regularized Mumford-Shah model and thresholding, Neural Process. Lett., 48(2) (2018), pp. 1227-1241.
[27] R. CHAN, H. YANG, AND T. ZENG, Total variation and tight frame image segmentation with intensity inhomogeneity, (2019), arXiv preprint arXiv:1904.01760.
[28] Z. LI, AND T. ZENG, A two-stage image segmentation model for multi-channel images, Commun. Comput. Phys., 19(4) (2016), pp. 904-926. · Zbl 1373.94246
[29] T. WU, J. SHAO, X. GU, M. K. NG, AND T. ZENG, Two-stage image segmentation based on nonconvex l 2 −l p approximation and thresholding, Appl. Math. Comput., 403 (2021), 126168. · Zbl 1510.94030
[30] X. YANG,AND Y. HUANG, A Modulus iteration method for SPSD linear complementarity problem arising in image retinex, Adv. Appl. Math. Mech., 12 (2020), pp. 579-598. · Zbl 1488.65147
[31] T. WU, X. GU, Y. WANG, AND T. ZENG, Adaptive total variation based image segmentation with semi-proximal alternating minimization, Signal Process., 183 (2021), 108017.
[32] T. WU, X. GU, J. SHAO, R. ZHOU, AND Z. LI, Colour image segmentation based on a convex K-means approach, IET Image Process., 2021.
[33] Y. LOU, T. ZENG, S. OSHER, AND J. XIN, A weighted difference of anisotropic and isotropic total variation model for image processing, SIAM J. Imag. Sci., 8(3) (2015), pp. 1798-1823. · Zbl 1322.94019
[34] D. HAN, D. SUN, AND L. ZHANG, Linear rate convergence of the alternating direction method of multipliers for convex composite programming, Math. Operations Res., 43(2) (2018), pp. 622-637. · Zbl 1440.90047
[35] T. WU, Z. PANG, Y. WANG AND Y. YANG, CS-MRI reconstruction based on the constrained TGV-shearlet scheme, Int. J. Numer. Anal. Model., 17(3) (2020), pp. 316-331. · Zbl 1471.92193
[36] M. WANG, C. HUANG, C. ZENG, AND C. LAI, Two-phase image inpainting: combine edge-fitting with PDE inpainting, Adv. Appl. Math. Mech., 4 (2012), pp. 769-779.
[37] Y. LOU, P. YIN, AND J. XIN, Point source super-resolution via non-convex L 1 based methods, J. Sci. Comput., 68(3) (2016), pp. 1082-1100. · Zbl 1354.65125
[38] T.-H. MA, Y. LOU, AND T.-Z. HUANG, Truncated l 1−2 models for sparse recovery and rank minimization, SIAM J. Imag. Sci., 10(3) (2017), pp. 1346-1380. · Zbl 1397.94021
[39] H. GE, J. WEN, AND W. CHEN, The null space property of the truncated l 1−2 -minimization, IEEE Signal Process. Lett., 25(8) (2018), pp. 1261-1265.
[40] Y. LOU, P. YIN, Q. HE, AND J. XIN, Computing sparse representation in a highly coherent dictionary based on difference of l 1 and l 2 , J. Sci. Comput., 64(1) (2015), pp. 178-196. · Zbl 1327.65111
[41] P. D. TAO ET AL., The dc (difference of convex functions) programming and dca revisited with dc models of real world nonconvex optimization problems, Ann. Operations Res., 133(1-4) (2005), pp. 23-46. · Zbl 1116.90122
[42] L. I. RUDIN, S. OSHER, AND E. FATEMI, Nonlinear total variation based noise removal algo-rithms, Phys. D Nonlinear Phenomena, 60(1-4) (1992), pp. 259-268. · Zbl 0780.49028
[43] R. CHOKSI, Y. VAN GENNIP, AND A. OBERMAN, Anisotropic total variation regularized l 1 -approximation and denoising/deblurring of 2D bar codes, (2010), arXiv:1007.1035. · Zbl 1226.49034
[44] A. FISCHER, A special newton-type optimization method, Optimization, 24(3-4) (1992), pp. 269-284. · Zbl 0814.65063
[45] R. B. POTTS, Some generalized order-disorder transformations, in: Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, 48 (1952), pp. 106-109. · Zbl 0048.45601
[46] D. MUMFORD, AND J. SHAH, Boundary detection by minimizing functionals, in: IEEE Confer-ence on Computer Vision and Pattern Recognition, San Francisco, 17 (1985), pp. 137-154.
[47] E. J. CANDES, J. K. ROMBERG, AND T. TAO, Stable signal recovery from incomplete and inac-curate measurements, Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 59(8) (2006), pp. 1207-1223. · Zbl 1098.94009
[48] E. J. CANDES, AND T. TAO, Decoding by linear programming, IEEE Transactions on Informa-tion Theory, 51(12) (2005), pp. 4203-4215. · Zbl 1264.94121
[49] Z. XU, X. CHANG, F. XU, AND H. ZHANG, L 1/2 regularization: A thresholding representation theory and a fast solver, IEEE Transactions on Neural Networks and Learning Systems, 23(7) (2012), pp. 1013-1027.
[50] S. ZHANG, AND J. XIN, Minimization of transformed L 1 penalty: closed form representation and iterative thresholding algorithms, (2014), arXiv preprint arXiv:1412.5240.
[51] T. ZHANG, Multi-stage convex relaxation for learning with sparse regularization, Adv. Neural Information Processing Systems, (2009), pp. 1929-1936.
[52] P. YIN, Y. LOU, Q. HE, AND J. XIN, Minimization of 1−2 for compressed sensing, SIAM J. Sci. Comput., 37(1) (2015), pp. A536-A563. · Zbl 1316.90037
[53] Y. WANG, J. YANG, W. YIN, AND Y. ZHANG, A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imag. Sci., 1(3) (2008), pp. 248-272. · Zbl 1187.68665
[54] C. WU, AND X.-C. TAI, Augmented lagrangian method, dual methods, and split bregman iteration for rof, vectorial tv, and high order models, SIAM J. Imag. Sci., 3(3) (2010), pp. 300-339. · Zbl 1206.90245
[55] M. A. FIGUEIREDO, AND J. M. BIOUCAS-DIAS, Restoration of poissonian images using alter-nating direction optimization, IEEE Trans. Image Process., 19(12) (2010), pp. 3133-3145. · Zbl 1371.94128
[56] X. GUO, Y. LI AND T. ZENG, A finite difference scheme for caputo-fabrizio fractional differential equations, Int. J. Numer. Anal. Model., 17(2) (2020), pp. 195-211. · Zbl 07244841
[57] K. ALSABTI, S. RANKA, AND V. SINGH, An efficient k-means clustering algorithm, 1997.
[58] J. A. HARTIGAN, AND M. A. WONG, Algorithm as 136: A k-means clustering algorithm, J. Royal Statistical Society Series C, (Applied Statistics) 28(1) (1979), pp. 100-108. · Zbl 0447.62062
[59] A. LIKAS, N. VLASSIS, AND J. J. VERBEEK, The global k-means clustering algorithm, Pattern Recognition, 36(2) (2003), pp. 451-461.
[60] T. KANUNGO, D. M. MOUNT, N. S. NETANYAHU, C. D. PIATKO, R. SILVERMAN, AND A. Y. WU, An efficient k-means clustering algorithm: Analysis and implementation, IEEE Trans. Pattern Anal. Machine Intelligence, 7 (2002), pp. 881-892.
[61] J. C. BEZDEK, R. EHRLICH, AND W. FULL, Fcm: The fuzzy c-means clustering algorithm, Comput. Geosci., 10(2-3) (1984), pp. 191-203.
[62] W. WANG, Y. ZHANG, Y. LI, AND X. ZHANG, The global fuzzy c-means clustering algorithm, in: 2006 6th World Congress on Intelligent Control and Automation, IEEE, 1 (2006), pp. 3604-3607.
[63] F. LI, AND J. QIN, Robust fuzzy local information and l p -norm distance-based image segmentation method, IET Imag. Process., 11(4) (2017), pp. 217-226.
[64] ANTONIN CHAMBOLLE, An algorithm for total variation minimization and applications, J. Math. Imag. Vision, 20(1-2) (2004), pp. 89-97. · Zbl 1366.94048
[65] JEAN-BAPTISTE HIRIART-URRUTY AND CLAUDE LEMARECHAL, Convex analysis and mini-mization algorithms I: fundamentals, Springer Sci. Business Media, (2013), 305.
[66] F. LI, M. K. NG, T. Y. ZENG, AND C. SHEN, A multiphase image segmentation method based on fuzzy region competition, SIAM J. Imag. Sci., 3(3) (2010), pp. 277-299. · Zbl 1200.68267
[67] J. LIU, X.-C. TAI, S. LEUNG, AND H. HUANG, A new continuous max-flow algorithm for multiphase image segmentation using super-level set functions, J. Visual Commun. Imag. Repre-sentation, 25(6) (2014), pp. 1472-1488.
[68] D. WANG, H. LI, X. WEI, AND X.-P. WANG, An efficient iterative thresholding method for image segmentation, J. Comput. Phys., 350 (2017), pp. 657-667. · Zbl 1380.65048
[69] X. CAI, R. CHAN, C.-B. SCHONLIEB, G. STEIDL, AND T. ZENG, Linkage between piecewise constant mumford-shah model and matemi model and its virtue in image segmentation, SIAM J. Sci. Comput., 41(6) (2019), pp. B1310-B1340. · Zbl 1454.94012
[70] P. DAMAYANTI, D. YUNIASRI, R. SARNO, A. FAJAR, AND D. RAHMAWATI, Corpus callosum segmentation from brain MRI images based on level set method, 2020 International Seminar on Application for Technology of Information and Communication, (iSemantic) (2020), pp. 155-160.
[71] G. GU, S. JIANG, AND J. YANG, A tvscad approach for image deblurring with impulsive noise, Inverse Problems, 33(12) (2017), 125008. · Zbl 1394.94011
[72] T. WU, AND J. SHAO, Non-convex and convex coupling image segmentation via TGpV regular-ization and thresholding, Adv. Appl. Math. Mech., 12 (2020), pp. 849-878. · Zbl 1488.94042
[73] F. FANG, F. LI, AND T. ZENG, Reducing spatially varying out-of-focus blur from natural image, Inverse Problems Imag., 11 (1) (2017), 65. · Zbl 1416.94015
[74] M. K. NG, X. YUAN, AND W. ZHANG, Coupled variational image decomposition and restoration model for blurred cartoon-plus-texture images with missing pixels, IEEE Trans. Image Process., 22(6) (2013), pp. 2233-2246. · Zbl 1373.94301
[75] Z. JIA, M. K. NG, AND G.-J. SONG, Robust quaternion matrix completion with applications to image inpainting, Numer. Linear Algebra Appl., 26(4) (2019), e2245. · Zbl 1474.65126
[76] S. NOWOZIN, Optimal decisions from probabilistic models: the intersection-over-union case, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2014), pp. 548-555.
[77] M. EVERINGHAM, S. A. ESLAMI, L. VAN GOOL, C. K. WILLIAMS, J. WINN, AND A. ZIS-SERMAN, The pascal visual object classes challenge: A retrospective, Int. J. Comput. Vision, 111(1) (2015), pp. 98-136.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.