×

A nonlinear mean value property for the Monge-Ampère operator. (English) Zbl 1466.35235

Summary: In recent years there has been an increasing interest in whether a mean value property, known to characterize harmonic functions, can be extended in some weak form to solutions of nonlinear equations. This question has been partially motivated by the surprising connection between Random Tug-of-War games and the normalized \(p\)-Laplacian discovered some years ago, where a nonlinear asymptotic mean value property for solutions of a PDE is related to a dynamic programming principle for an appropriate game. Currently, asymptotic nonlinear mean value formulas are rare in the literature and our goal is to show that an asymptotic nonlinear mean value formula holds for the classical Monge-Ampère equation.

MSC:

35J96 Monge-Ampère equations

References:

[1] A. D. Aleksandrov:Dirichlet’s problem for the equationDet||zij||=φ(z1, . . . , zn, z, x1,· · ·, xn). I. (Russian), Vestnik Leningrad. Univ. Ser. Mat. Meh. Astr. 13(1) (1958) 5-24. · Zbl 0114.30202
[2] N. Armstrong:Properties of mean value sets: Angle conditions, blowup solutions, and nonconvexity, Potential Analysis 52 (2020) 527-544. · Zbl 1437.35202
[3] N. Armstrong, I. Blank:Nondegenerate motion of singular points in obstacle problems with varying data, J. Diff. Equations 267(9) (2019) 5370-5387. · Zbl 1441.35108
[4] A. R. Arroyo García:Nonlinear Mean Value Properties Related to thep-Laplacian, Ph.D. Thesis, Universitat Autònoma de Barcelona (2017).
[5] A. Arroyo, J. G. Llorente:On the asymptotic mean value property for planar pharmonic functions, Proc. Amer. Math. Soc. 144(9) (2016) 3859-3868. · Zbl 1345.31006
[6] A. Aryal, I. Blank:Geometry of mean value sets for general divergence form uniformly elliptic operators, Potential Analysis 50(1) (2019) 43-54. · Zbl 1410.35045
[7] I. Ya. Bakelman:On the theory of Monge-Ampère’s equations (Russian), Vestnik Leningrad. Univ. Ser. Mat. Meh. Astr. 13(1) (1958) 25-38. · Zbl 0078.08903
[8] B. Benson, I. Blank, J. LeCrone:Mean value theorems for Riemannian manifolds via the obstacle problem, J. Geom. Analysis 29(3) (2019) 2752-2775. · Zbl 1501.58005
[9] P. Blanc, J. D. Rossi:Game Theory and Partial Differential Equations, De Gruyter, Berlin (2019). · Zbl 1430.91001
[10] I. Blank, Z. Hao:The mean value theorem and basic properties of the obstacle problem for divergence form elliptic operators, Comm. Anal. Geom. 23(1) (2015) 129-158. · Zbl 1309.35034
[11] W. Blaschke:Ein Mittelwertsatz und eine kennzeichnende Eigenschaft des logarithmischen Potentials, Ber. Verh. Sächs. Akad. Wiss. Leipzig 68 (1916) 3-7. · JFM 46.0742.01
[12] A. Bonfiglioli, E. Lanconelli:Subharmonic functions in sub-Riemannian settings, J. Eur. Math. Soc. 15(2) (2013) 387-441. · Zbl 1270.31002
[13] L. Caffarelli:InteriorW2,pestimates for solutions of the Monge-Ampère equation, Ann. of Math. (2) 131(1) (1990) 135-150. · Zbl 0704.35044
[14] L. Caffarelli:A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity, Ann. of Math. (2) 131(1) (1990) 129-134. · Zbl 0704.35045
[15] L. Caffarelli:Some regularity properties of solutions of Monge Ampère equation, Comm. Pure Appl. Math. 44(8-9) (1991) 965-969. · Zbl 0761.35028
[16] L. Caffarelli:A note on the degeneracy of convex solutions to Monge Ampère equation, Comm. Partial Diff. Equations 18(7-8) (1993) 1213-1217. · Zbl 0785.35028
[17] L. Caffarelli:The Obstacle Problem, Lezioni Fermiane, Accademia Nazionale dei Lincei Rome, Scuola Normale Superiore, Pisa (1998). · Zbl 1084.49001
[18] L. A. Caffarelli, L. Nirenberg, J. Spruck:The Dirichlet problem for nonlinear secondorder elliptic equations. I: Monge-Ampère equation, Comm. Pure Appl. Math. 37(3) (1984) 369-402. · Zbl 0598.35047
[19] L. A. Caffarelli, L. Nirenberg, J. Spruck:The Dirichlet problem for nonlinear secondorder elliptic equations. III: Functions of the eigenvalues of the Hessian, Acta Math. 155(3-4) (1985) 261-301. · Zbl 0654.35031
[20] L. Caffarelli, J. M. Roquejoffre:Uniform Hölder estimates in a class of elliptic systems and applications to singular limits in models for diffusion flames, Arch. Ration. Mech. Analysis 183(3) (2007) 457-487. · Zbl 1189.35084
[21] G. De Philippis, A. Figalli:The Monge-Ampère equation and its link to optimal transportation, Bull. Amer. Math. Soc. 51(4) (2014) 527-580. · Zbl 1515.35005
[22] F. Del Teso, E. Lindgreen:A mean value formula for the variationalp-Laplacian, Nonlinear Diff. Equations Appl. 28 (2021), art. no. 27. · Zbl 1467.35190
[23] F. Ferrari, Q. Liu, J. J. Manfredi:On the characterization ofp-harmonic functions on the Heisenberg group by mean value properties, Discrete Contin. Dyn. Systems 34(7) (2014) 2779-2793. · Zbl 1293.35350
[24] A. Figalli:The Monge-Ampère Equation and its Applications, Zurich Lectures in Advanced Mathematics, European Mathematical Society, Zürich (2017). · Zbl 1435.35003
[25] B. Gaveau:Méthodes de contrôle optimal en analyse complexe. I: Résolution d’equations de Monge Ampère, J. Funct. Analysis 25 (1977) 391-411. · Zbl 0356.35071
[26] T. Glimm, V. Oliker:Optical design of single reflector systems and the MongeKantorovich mass transfer problem, J. Math. Sci. (N. Y.) 117(3) (2003) 4096-4108. · Zbl 1049.49030
[27] T. Glimm, V. Oliker:Optical design of two-reflector systems, the Monge-Kantorovich mass transfer problem and Fermat’s principle, Indiana Univ. Math. J. 53(5) (2004) 1255-1277. · Zbl 1129.49309
[28] C. Gutiérrez:The Monge-Ampère Equation, Progress in Nonlinear Differential Equations and their Applications 44, Birkhäuser, Boston (2001). · Zbl 0989.35052
[29] Ü. Kuran:On the mean-value property of harmonic functions, Bull. London Math. Soc. 4 (1972) 311-312. · Zbl 0257.31006
[30] E. Le Gruyer:On absolutely minimizing extensions and the PDE∆∞(u) = 0, Nonlinear Diff. Equations Appl. 14 (2007) 29-55. · Zbl 1154.35055
[31] E. Le Gruyer, J. C. Archer:Harmonious extensions, Siam J. Math. Analysis 29(1) (1998) 279-292. · Zbl 0915.46002
[32] P. Lindqvist:Notes on the Infinity Laplace Equation, Springer, Berlin (2016). · Zbl 1352.35045
[33] P. Lindqvist, J. Manfredi:On the mean value property for the p-Laplace equation in the plane, Proc. Amer. Math. Soc. 144(1) (2016) 143-149. · Zbl 1327.35124
[34] P. L. Lions:Sur les equations de Monge-Ampère I, Manuscripta Math. 41 (1983) 1-43. · Zbl 0509.35036
[35] P. L. Lions:Two remarks on Monge-Ampère equations, Ann. Mat. Pura Appl. (4) 142 (1985) 263-275. · Zbl 0594.35023
[36] W. Littman, G. Stampacchia, H. F. Weinberger:Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola. Norm. Sup. Pisa. Cl. Sci. 17(1-2) (1963) 43-77. · Zbl 0116.30302
[37] J. J. Manfredi, M. Parviainen, J. D. Rossi:An asymptotic mean value characterization ofp-harmonic functions, Proc. Amer. Math. Soc. 138 (2010) 881-889. · Zbl 1187.35115
[38] Y. Peres, O. Schramm, S. Sheffield, D. Wilson:Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc. 22(1) (2009) 167-210. · Zbl 1206.91002
[39] Y. Peres, S. Sheffield:Tug-of-war with noise: a game theoretic view of thep-Laplacian, Duke Math. J. 145(1) (2008) 91-120. · Zbl 1206.35112
[40] A. V. Pogorelov:Extrinsic Geometry of Convex Surfaces, translated from the Russian by the Israel Program for Scientific Translations, Translations of Mathematical Monographs 35, American Mathematical Society, Providence (1973). · Zbl 0311.53067
[41] I. Privaloff:Sur les fonctions harmoniques, Mat. Sb. 32(3) (1925) 464-471. · JFM 51.0363.02
[42] N. Trudinger:On the Dirichlet problem for Hessian equations, Acta Math. 175(2) (1995) 151-164. · Zbl 0887.35061
[43] N. Trudinger:Weak solutions of Hessian equations, Comm. Partial Differential Equations 22(7-8) (1997) 1251-1261. · Zbl 0883.35035
[44] N. S. Trudinger, X. J. Wang:The Monge-Ampère equation and its geometric applications, Handbook of Geometric Analysis 1 (2008) 467-524. · Zbl 1156.35033
[45] C. Villani:Topics in Optimal Transportation, Graduate Studies in Mathematics, American Mathematical Society, Providence (2003). · Zbl 1106.90001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.