×

Langevin dynamic simulation of hysteresis in a field-swept Landau potential. (English) Zbl 1101.82332

Summary: Numerical simulations are done of Langevin dynamics for a uniform-orderparameter, field-swept Landau model, \(\Phi= -|a/2|m^2+|b/4|m^4-mh(t) \), to study hysteresis effects. The field is swept at a constant rate \(h(t)=h(0)+ht\). The stochastic jump values of the field \(\{h_J\}\) from an initially prepared metastable minimum \(m(0)\) are recorded, on passage to a global minimum \(m(\tau)\). The results are: (a) The mean jump \(h_J(h)\) increases (hysteresis loop widens) with \(h\), confirming a previous theoretical criterion based on rate competition between field-sweep and inverse mean first-passage time \(\langle\tau\rangle\) (FPT); (b) The broad jump distribution \(\rho(h_J,h)\) is related to intrinsically large FPT fluctuations \((\langle\tau^2\rangle-\langle\tau\rangle^2)/\langle\tau^2\rangle \sim O(1)\), and can be quantitatively understood. Possible experimental tests of the ideas are indicated.

MSC:

82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
Full Text: DOI

References:

[1] S. Chikazumi,Physics of Magnetism (Wiley, New York, 1964).
[2] M. Avrami,J. Chem. Phys. 7:1103 (1939). · doi:10.1063/1.1750380
[3] D. R. Uhlman,J. Non-cryst. Solids 7:337 (1972). · doi:10.1016/0022-3093(72)90269-4
[4] E. G. Gage and L. Mandel,J. Opt. Soc. Am. B 6:287 (1989). · doi:10.1364/JOSAB.6.000287
[5] J. A. Barker, D. E. Schreiber, B. G. Huth, and D. H. Everett,Proc. R. Soc. Lond. A 386:251 (1983). · doi:10.1098/rspa.1983.0035
[6] W. F. Brown,J. Appl. Phys. 33:1308 (1962). · doi:10.1063/1.1728706
[7] E. P. Wohlfarth,J. Appl. Phys. 35:783 (1964). · doi:10.1063/1.1713475
[8] I. D. Mayergoyz,Phys. Rev. Lett. 56:1518 (1986). · doi:10.1103/PhysRevLett.56.1518
[9] G. F. Mazenko and M. Zannetti,Phys. Rev. B 32:4565 (1985). · doi:10.1103/PhysRevB.32.4565
[10] M. Rao, H. R. Krishnamurthy, and R. Pandit,Phys. Rev. B 42:856 (1990). · doi:10.1103/PhysRevB.42.856
[11] V. P. Skriprov and A. V. Skiprov,Sov. Phys. Usp. 22:389 (1979). · doi:10.1070/PU1979v022n06ABEH005571
[12] R. Gilmore,Phys. Rev. A 20:2510 (1979). · doi:10.1103/PhysRevA.20.2510
[13] D. Kumar, inProceedings of the Winter School in Stochastic Processes, Hyderabad, 1982 (Springer, Berlin 1983), p. 186. · Zbl 0568.93041
[14] C. P. Bean,J. Appl. Phys. 26:1381 (1955). · doi:10.1063/1.1721912
[15] G. S. Agarwal and S. R. Shenoy,Phys. Rev. A 23:2719 (1981). · doi:10.1103/PhysRevA.23.2719
[16] S. R. Shenoy and G. S. Agarwal,Phys. Rev. A 28:1315 (1984). · doi:10.1103/PhysRevA.29.1315
[17] A. Simon and A. Libchaber,Phys. Rev. Lett. 68:3375 (1992). · doi:10.1103/PhysRevLett.68.3375
[18] M. C. Mahato and S. R. Shenoy, in Proceedings of International Workshop on Statistical Physics of Solids and Glasses, Calcutta, December, 1991,Physica A 186:220 (1992). · doi:10.1016/0378-4371(92)90377-3
[19] M. Acharyya, B. K. Chakrabarti and A. K. Sen,Physica A 186:231 (1992); W. S. Lo and R. A. Pelcorits,Phys. Rev. A 42:7471 (1990). · doi:10.1016/0378-4371(92)90378-4
[20] R. Stratonovich,Topics in the Theory of Random Noise, (Gordon and Breach, New York, 1963), Vol. 1, Chapter 4. · Zbl 0119.14502
[21] H. A. Kramers,Physica C 7:284 (1940).
[22] K. Binder,Rep. Prog. Phys. 50:783 (1987). · doi:10.1088/0034-4885/50/7/001
[23] W. Paul, D. W. Heermann, and K. Binder,J. Phys. A 22:3325 (1989). · doi:10.1088/0305-4470/22/16/022
[24] S. Sengupta, Y. J. Marathe, and S. Puri,Phys. Rev. B 45:7828 (1992). · doi:10.1103/PhysRevB.45.7828
[25] D. Dhar and P. B. Thomas,J. Phys. A 25:4967 (1990);Europhys. Lett. 21:965 (1993). · doi:10.1088/0305-4470/25/19/012
[26] P. Jung, G. Gray, R. Roy, and P. Mandel,Phys. Rev. Lett. 65:1873 (1990). · doi:10.1103/PhysRevLett.65.1873
[27] Z. Schuss and B. J. Matkowsky,SIAM J. Appl. Math. 35:604 (1979); Z. Schuss,SIAM J. Rev. 22:119 (1980). · Zbl 0406.60071 · doi:10.1137/0136043
[28] K. P. N. Murthy and S. R. Shenoy,Phys. Rev. A 36:5087 (1987). · doi:10.1103/PhysRevA.36.5087
[29] R. Roy, R. Short, J. Durnin, and L. Mandel,Phys. Rev. Lett. 45:1486 (1980). · doi:10.1103/PhysRevLett.45.1486
[30] T. V. Ramakrishnan and M. Yussouff,Phys. Rev. B 19:2775 (1979); A. D. J. Haymet and D. W. Oxtoby,J. Chem. Phys. 74:2559 (1981); C. Dasgupta, unpublished. · doi:10.1103/PhysRevB.19.2775
[31] F. Moss and P. V. E. McClintock, eds.,Noise in Nonlinear Dynamical Systems (Cambridge University Press, Cambridge, 1989).
[32] B. Chattopadhyay, M. C. Mahato, and S. R. Shenoy, unpublished.
[33] P. Jung and P. Hanggi,Phys. Rev. A 44:8033 (1991);Europhys. Lett. 8:505 (1989), and references therein.
[34] D. W. Heermann,Computer Simulation Methods in Theoretical Physics (Springer-Verlag, Berlin, 1986). · JFM 24.0080.05
[35] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,Numerical Recipes (Cambridge University Press, Cambridge, 1987). · Zbl 0587.65004
[36] M. Suzuki,Adv. Chem. Phys. 46:195 (1981). · doi:10.1002/9780470142653.ch4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.