×

Bilateral series and Ramanujan’s radial limits. (English) Zbl 1316.11035

Ramanujan described a mock theta function as a \(q\)-series \(f(q)\) satisfying the following:
(1) For every root of unity \(\zeta\), there exists a theta function (i.e., a modular form) \(\theta_{\zeta}(q)\) such that \(f(q) - \theta_{\zeta}(q)\) is bounded as \(q \to \zeta\) radially.
(2) There is no theta function which works for all \(\zeta\).
In this paper the authors discuss how mock theta identities imply (1) for the fifth order mock theta functions and most of the sixth and eighth order mock theta functions. For example, consider the fifth order mock theta functions \[ f_0(q) := \sum_{n \geq 0} \frac{q^{n^2}}{(-q;q)_n} \] and \[ \psi_0(q) := \sum_{n \geq 0} q^{\binom{n+2}{2}}(-q;q)_n. \] Identities of Ramanujan give that \[ f_0(q) + 2\psi_0(q) = B(q), \] where \[ B(q) := \frac{(q)_{\infty}}{(-q)_{\infty}(q;q^5)_{\infty}(q^4;q^5)_{\infty}} + 4q\frac{(q^4;q^4)_{\infty}(-q^2;q^2)_{\infty}}{(q^8;q^{20})_{\infty}(q^{12};q^{20})_{\infty}} \] is essentially a modular form of weight \(1/2\). Hence if \(\zeta\) is, for example, a primitive \(2k\)th root of unity, then we have \[ \lim_{q \to \zeta}(f_0(q) - B(q)) = -2 \sum_{n=0}^{k-1}\zeta^{\binom{n+2}{2}}(-\zeta;\zeta)_n, \] when \(q \to \zeta\) radially.
The “bilateral” of the paper’s title refers to the fact that the sums like \(f_0(q) + 2\psi_0(q)\) may be regarded as bilateral series.

MSC:

11F37 Forms of half-integer weight; nonholomorphic modular forms
33D15 Basic hypergeometric functions in one variable, \({}_r\phi_s\)

References:

[1] Andrews, George E.; Garvan, F. G., Ramanujan’s “lost” notebook. VI. The mock theta conjectures, Adv. in Math., 73, 2, 242-255 (1989) · Zbl 0677.10010 · doi:10.1016/0001-8708(89)90070-4
[2] Fine, Nathan J., Basic hypergeometric series and applications, Mathematical Surveys and Monographs 27, xvi+124 pp. (1988), American Mathematical Society: Providence, RI:American Mathematical Society · Zbl 0647.05004
[3] [FOR1] A. Folsom, K. Ono, and R. Rhoades, \(q\)-series and quantum modular forms, submitted for publication.
[4] [FOR2] A. Folsom, K. Ono, and R. Rhoades, Ramanujan’s radial limits, submitted for publication. · Zbl 1359.11064
[5] Gasper, George; Rahman, Mizan, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications 35, xx+287 pp. (1990), Cambridge University Press: Cambridge:Cambridge University Press · Zbl 0695.33001
[6] [Gordon] B. Gordon and R. McIntosh, A survey of the classical mock theta functions, Partitions, \(q\)-series, and modular forms, Dev. Math. 23, Springer-Verlag, New York, 2012, 95-244.
[7] [GOR] M. Griffin, K. Ono, and L. Rolen Ramanujan’s mock theta functions, Proceedings of the National Academy of Sciences, USA, 110, No. 15 (2013), pages 5765-5768. · Zbl 1295.11038
[8] Hickerson, Dean, A proof of the mock theta conjectures, Invent. Math., 94, 3, 639-660 (1988) · Zbl 0661.10059 · doi:10.1007/BF01394279
[9] Kubert, Daniel S.; Lang, Serge, Modular units, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science] 244, xiii+358 pp. (1981), Springer-Verlag: New York:Springer-Verlag · Zbl 0492.12002
[10] Ono, Ken, The web of modularity: arithmetic of the coefficients of modular forms and \(q\)-series, CBMS Regional Conference Series in Mathematics 102, viii+216 pp. (2004), Published for the Conference Board of the Mathematical Sciences, Washington, DC · Zbl 1119.11026
[11] Watson, G. N., The Mock Theta Functions (2), Proc. London Math. Soc., S2-42, 1, 274 pp. · Zbl 0015.30402 · doi:10.1112/plms/s2-42.1.274
[12] [Zagier] D. Zagier, Ramanujan’s mock theta functions and their applications (after Zwegers and Ono-Bringmann), S\'eminaire Bourbaki Vol. 2007/2008, Ast\'erisque No. 326 (2009), Exp. No. 986, vii-viii, 143-164 (2010). MR2695321 (2011k:11049). · Zbl 1198.11046
[13] Zwegers, S. P., Mock \(\theta \)-functions and real analytic modular forms, Contemp. Math. 291, 269-277 (2001), Amer. Math. Soc.: Providence, RI:Amer. Math. Soc. · Zbl 1044.11029 · doi:10.1090/conm/291/04907
[14] [Zwegers02] S. Zwegers, Mock theta functions, Ph.D. Thesis (Advisor: D. Zagier), Universiteit Utrecht, 2002. \endbiblist · Zbl 1194.11058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.