×

Hierarchical sparse observation models and informative prior for Bayesian inference of spatially varying parameters. (English) Zbl 07508390

Summary: We develop a new computational approach for the speedy and accurate recovery of unknown spatially varying parameters of (stochastic) PDE models based on the sequentially arriving noisy observations of the evolving system variables. Two essential ingredients in our strategy for the identification of the target spatial fields are given by the Fourier diagonalization (FD) method and the hierarchical Bayesian model.
We first apply the FD framework to perform an effectively parallelized computation in quantifying the propagating uncertainties of the dynamic variables in the Fourier space, and to facilitate a drastic saving of computational resources required for the Bayesian estimation of the associated parameters via sequential data assimilation. Yet our case study reveals that a very poor performance of the FD scheme occurs when the fast and slow variables coexist in the system evolution. The key observation is that, estimating the parameters in association with some slow variables, the FD-based Bayesian solver significantly underperforms compared to the remaining cases of faster variables. Due to this highly non-uniform discrepancy in the accuracy across distinct Fourier modes, the approximation of the parameter field cannot be so desired if the consequence is represented in the physical space.
As one effort to circumvent this problem, we provide a systematic approach for a radical improvement of the naive FD technique. To do this, we make use of the hierarchical Bayesian model; it refers to the process of gradually enriching the knowledge of the unknown spatial fields from coarse to medium and to fine resolutions by using the Bayesian inference obtained at coarser levels to provide prior information for the estimation at finer levels. One major contribution of this paper is the development of a variant of the classical application of the multi-resolution approach through the close integration with the FD method, leading to the emergence of a new Bayesian paradigm for the data-driven parametric identification. Numerical experiments are performed to corroborate our demonstration concerning the efficacy and effectiveness of the proposed algorithm in obtaining a good degree of accuracy together with a significantly reduced computational cost.

MSC:

62-XX Statistics
65-XX Numerical analysis

Software:

PRMLT; EnKF; PMTK
Full Text: DOI

References:

[1] Anderson, B.; Moore, J.; Barratt, J., Optimal Filtering (1979) · Zbl 0688.93058
[2] Barry, R. P.; Jay, M.; Hoef, V., Blackbox kriging: spatial prediction without specifying variogram models, J. Agric. Biol. Environ. Stat., 297-322 (1996)
[3] Bengtsson, T.; Bickel, P.; Li, B., Curse-of-dimensionality revisited: collapse of the particle filter in very large scale systems, (Probability and Statistics: Essays in Honor of David A. Freedman, vol. 2 (2008)), 316-334 · Zbl 1166.93376
[4] Bennett, A. F., Inverse Methods in Physical Oceanography (1992), Cambridge University Press · Zbl 0782.76002
[5] Bickel, P.; Li, B.; Bengtsson, T., Sharp failure rates for the bootstrap particle filter in high dimensions, (IMS Collections: Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh, vol. 3 (2008)), 318-329 · Zbl 1159.62004
[6] Bishop, C. M., Pattern Recognition and Machine Learning, vol. 4 (2006), Springer: Springer New York · Zbl 1107.68072
[7] Branicki, M.; Gershgorin, B.; Majda, A., Filtering skill for turbulent signals for a suite of nonlinear and linear extended Kalman filters, J. Comput. Phys., 231, 4, 1462-1498 (2012) · Zbl 1242.65019
[8] Branicki, M.; Majda, A., Dynamic stochastic superresolution of sparsely observed turbulent systems, J. Comput. Phys. (2013) · Zbl 1349.76761
[9] Castronovo, E.; Harlim, J.; Majda, A., Mathematical test criteria for filtering complex systems: plentiful observations, J. Comput. Phys., 227, 7, 3678-3714 (2008) · Zbl 1132.93347
[10] Chen, R.; Liu, J., Mixture Kalman filters, J. R. Stat. Soc., Ser. B, Stat. Methodol., 62, 3, 493-508 (2000) · Zbl 0953.62100
[11] Craig, P. S.; Goldstein, M.; Rougier, J. C.; Seheult, A. H., Bayesian forecasting for complex systems using computer simulators, J. Am. Stat. Assoc., 96, 454, 717-729 (2001) · Zbl 1017.62019
[12] Da Prato, G.; Zabczyk, J., Stochastic Equations in Infinite Dimensions (2014), Cambridge University Press · Zbl 1317.60077
[13] Doucet, A.; De Freitas, N.; Gordon, N., Sequential Monte Carlo Methods in Practice (2001), Springer Verlag · Zbl 0967.00022
[14] Engl, H. W.; Hanke, M.; Neubauer, A., Regularization of Inverse Problems, vol. 375 (1996), Springer Science & Business Media · Zbl 0859.65054
[15] Evensen, G., Data Assimilation: The Ensemble Kalman Filter (2009), Springer Verlag
[16] Gelb, A., Applied Optimal Estimation (1974), MIT Press
[17] Gershgorin, B.; Harlim, J.; Majda, A., Test models for improving filtering with model errors through stochastic parameter estimation, J. Comput. Phys., 229, 1, 1-31 (2010) · Zbl 1178.93133
[18] Gershgorin, B.; Majda, A., A nonlinear test model for filtering slow-fast systems, Commun. Math. Sci., 6, 3, 611-649 (2008) · Zbl 1152.62065
[19] Glaser, R.; Johannesson, G.; Sengupta, S.; Kosovic, B.; Carle, S.; Franz, G.; Aines, R.; Nitao, J.; Hanley, W.; Ramirez, A., Stochastic engine final report: Applying Markov chain Monte Carlo methods with importance sampling to large-scale data-driven simulation (2004), Lawrence Livermore National Lab.: Lawrence Livermore National Lab. Livermore, CA (US), Tech. Rep.
[20] Gordon, N.; Salmond, D.; Smith, A., Novel approach to nonlinear/non-Gaussian Bayesian state estimation, (Radar and Signal Processing, IEE Proceedings F, vol. 140 (1993), IET), 107-113
[21] Harlim, J.; Majda, A., Filtering nonlinear dynamical systems with linear stochastic models, Nonlinearity, 21, 6, 1281 (2008) · Zbl 1147.93411
[22] Harlim, J.; Majda, A. J., Test models for filtering with superparameterization, Multiscale Model. Simul., 11, 1, 282-308 (2013) · Zbl 1266.93150
[23] Hegstad, B. K.; Henning, O., Uncertainty in production forecasts based on well observations, seismic data, and production history, SPE J., 6, 04, 409-424 (2001)
[24] Jazwinski, A., Stochastic Processes and Filtering Theory, vol. 64 (1970), Mathematics in Science and Engineering: Mathematics in Science and Engineering San Diego, California · Zbl 0203.50101
[25] Kaipio, J. P.; Somersalo, E., Computational and statistical methods for inverse problems, Appl. Math. Sci., 160 (2004)
[26] Kalman, R., A new approach to linear filtering and prediction problems, J. Basic Eng., 82, 1, 35-45 (1960)
[27] Kalnay, E., Atmospheric Modeling, Data Assimilation, and Predictability (2003), Cambridge University Press
[28] Keating, S. R.; Majda, A. J.; Smith, K. S., New methods for estimating poleward eddy heat transport using satellite altimetry, Mon. Weather Rev. (2011)
[29] Kitanidis, P. K., Parameter uncertainty in estimation of spatial functions: Bayesian analysis, Water Resour. Res., 22, 4, 499-507 (1986)
[30] Koutsourelakis, P.-S., A multi-resolution, non-parametric, Bayesian framework for identification of spatially-varying model parameters, J. Comput. Phys., 228, 17, 6184-6211 (2009) · Zbl 1190.62211
[31] Kushner, H., Approximations to optimal nonlinear filters, IEEE Trans. Autom. Control, 12, 5, 546-556 (1967)
[32] Lee, H. K.; Higdon, D. M.; Bi, Z.; Ferreira, M. A.; West, M., Markov random field models for high-dimensional parameters in simulations of fluid flow in porous media, Technometrics, 44, 3, 230-241 (2002)
[33] Li, P., An inverse random source scattering problem in inhomogeneous media, Inverse Probl., 27, 3, Article 035004 pp. (2011) · Zbl 1217.34131
[34] Liu, F.; Bayarri, M.; Berger, J.; Paulo, R.; Sacks, J., A Bayesian analysis of the thermal challenge problem, Comput. Methods Appl. Mech. Eng., 197, 29-32, 2457-2466 (2008) · Zbl 1388.80006
[35] Majda, A.; Wang, X., Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows (2006), Cambridge University Press · Zbl 1141.86001
[36] Majda, A. J.; Grote, M. J., Explicit off-line criteria for stable accurate time filtering of strongly unstable spatially extended systems, Proc. Natl. Acad. Sci., 104, 4, 1124-1129 (2007) · Zbl 1135.93378
[37] Majda, A. J.; Harlim, J., Filtering Complex Turbulent Systems (2012), Cambridge University Press · Zbl 1250.93002
[38] Majda, A. J.; Harlim, J.; Gershgorin, B., Mathematical strategies for filtering turbulent dynamical systems, Discrete Contin. Dyn. Syst., 27, 2, 441-486 (2010) · Zbl 1191.93135
[39] Murphy, K. P., Machine Learning: A Probabilistic Perspective (2012), MIT Press · Zbl 1295.68003
[40] Oliver, D. S.; Reynolds, A. C.; Liu, N., Inverse Theory for Petroleum Reservoir Characterization and History Matching (2008), Cambridge University Press
[41] Prévôt, C.; Röckner, M., A Concise Course on Stochastic Partial Differential Equations, vol. 1905 (2007), Springer · Zbl 1123.60001
[42] Sapsis, T. P.; Majda, A. J., A statistically accurate modified quasilinear Gaussian closure for uncertainty quantification in turbulent dynamical systems, Phys. D: Nonlinear Phenom. (2013) · Zbl 1278.70018
[43] Särkkä, S., Bayesian Filtering and Smoothing, vol. 3 (2013), Cambridge University Press · Zbl 1274.62021
[44] Schmidt, D. M.; George, J. S.; Wood, C. C., Bayesian inference applied to the electromagnetic inverse problem, Hum. Brain Mapp., 7, 3, 195-212 (1999)
[45] Snyder, C.; Bengtsson, T.; Bickel, P.; Anderson, J., Obstacles to high-dimensional particle filtering, Mon. Weather Rev., 136, 12, 4629-4640 (2008)
[46] Stordal, A.; Karlsen, H.; Nævdal, G.; Skaug, H.; Vallès, B., Bridging the ensemble Kalman filter and particle filters: the adaptive Gaussian mixture filter, Comput. Geosci., 15, 2, 293-305 (2011) · Zbl 1213.62151
[47] Strauss, W. A., Partial Differential Equations: An Introduction (2007), John Wiley & Sons
[48] Wan, J.; Zabaras, N., A Bayesian approach to multiscale inverse problems using the sequential Monte Carlo method, Inverse Probl., 27, 10, Article 105004 pp. (2011) · Zbl 1228.65009
[49] Wang, J.; Zabaras, N., Hierarchical Bayesian models for inverse problems in heat conduction, Inverse Probl., 21, 1, 183 (2004) · Zbl 1060.62036
[50] Weir, I. S., Fully Bayesian reconstructions from single-photon emission computed tomography data, J. Am. Stat. Assoc., 92, 437, 49-60 (1997) · Zbl 0889.62023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.