×

Oligopolies price game in fractional order system. (English) Zbl 1434.91043

Summary: A new fractional discrete dynamical system of the price game model is proposed by considering long-term memory of price volatility based on the discrete fractional differentiation calculus. The complex dynamic behaviours are studied with various differential orders using bifurcation diagrams of price. The numerical simulation has indicated that long periods of price adjustment are needed to achieve a stable region as the fractional order decreases, whilst the dynamic behaviours of bifurcation and chaos become increasingly complex. The fractional system, that is more generalized than the integer-order, is stable on the low-price adjustment speed and generally chaotic on the fast-price adjustment speed. This study uses the parameter-dependent Lyapunov stability theory as basis to address the tracking errors for a fractional discrete dynamical system by controllers. When bifurcation and chaos exist in fractional discrete dynamical system, the controllers are presented to guarantee that the actual value prices converge to the expected value prices.

MSC:

91B54 Special types of economic markets (including Cournot, Bertrand)
39A60 Applications of difference equations
39A30 Stability theory for difference equations
93C55 Discrete-time control/observation systems
Full Text: DOI

References:

[1] Bazhlekova, E.; Bazhlekov, I., Viscoelastic flows with fractional derivative models: computational approach by convolutional calculus of Dimovski, Fract Calc Appl Anal, 17, 4, 954-976 (2014) · Zbl 1314.76007
[2] Jiang, Y.; Qi, H.; Xu, H.; Jiang, X., Transient electroosmotic slip flow of fractional Oldroyd-B fluids, Microfluid Nanofluid, 21, 1, 7 (2017)
[3] Xu, H.; Jiang, X., Creep constitutive models for viscoelastic materials based on fractional derivatives, Comput Math Appl, 73, 6, 1377-1384 (2017) · Zbl 1458.74027
[4] Xin, B.; Zhang, J., Finite-time stabilizing a fractional-order chaotic financial system with market confidence, Nonlinear Dyn, 79, 2, 1399-1409 (2015) · Zbl 1345.91024
[5] Baleanu, D.; Asad, J. H.; Petras, I., Numerical solution of the fractional Euler-Lagrange’s equations of a thin elastica model, Nonlinear Dyn, 81, 1-2, 97-102 (2015) · Zbl 1431.74020
[6] Atici, F. M.; Eloe, P. W., Initial value problems in discrete fractional calculus, Proc Am Math Soc, 137, 3, 981-989 (2009) · Zbl 1166.39005
[7] Abdeljawad, T., On Riemann and Caputo fractional differences, Comput Math Appl, 62, 3, 1602-1611 (2011) · Zbl 1228.26008
[8] Bastos, N. R.O.; Rui, A. C.F.; Torres, D. F.M., Discrete-time fractional variational problems, Signal Proc, 91, 3, 513-524 (2010) · Zbl 1203.94022
[9] Abdeljawad, T.; Baleanu, D., Monotonicity analysis of a Nabla discrete fractional operator with discrete Mittag-Leffler kernel, Chaos Solitons Fractals, 102, 106-110 (2017) · Zbl 1374.26011
[10] Abdeljawad, T.; Torres, D. F.M., Symmetric duality for left and right Riemann-Liouville and Caputo fractional differences, Arab J Math Sci, 23, 2, 157-172 (2017) · Zbl 1366.26012
[11] Anastassiou, G. A., Nabla discrete fractional calculus and Nabla inequalities, Math Comput Model, 51, 5, 562-571 (2010) · Zbl 1190.26001
[12] Atici, F. M.; Şengül, S., Modeling with fractional difference equations, J Math Anal Appl, 369, 1, 1-9 (2010) · Zbl 1204.39004
[13] Elabbasy, E. M.; Agiza, H. N.; Elsadany, A. A., Analysis of nonlinear triopoly game with heterogeneous players, Comput Math Appl, 57, 3, 488-499 (2009) · Zbl 1165.91324
[14] Agiza, H. N., On the analysis of stability, bifurcation, chaos and chaos control of Kopel map, Chaos Solitons Fractals, 10, 11, 1909-1916 (1999) · Zbl 0955.37022
[15] Yassen, M. T.; Agiza, H. N., Analysis of a duopoly game with delayed bounded rationality, Appl Math Comput, 138, 2, 387-402 (2003) · Zbl 1102.91021
[16] Liu, F.; Li, Y., Complex nonlinear dynamic system of oligopolies price game with heterogeneous players under noise, Int J Bifurc Chaos, 26, 11, 1955-1966 (2016) · Zbl 1349.39032
[17] Cánovas, J. S.; Muñoz Guillermo, M., On the dynamics of Kopel’s Cournot duopoly model, Appl Math Comput, 330, 292-306 (2018) · Zbl 1427.91164
[18] Sun, Z.; Ma, J., Complexity of triopoly price game in chinese cold rolled steel market, Nonlinear Dyn, 67, 3, 2001-2008 (2012)
[19] Ji, Y.; Lai, L.; Zhong, S.; Zhang, L., Bifurcation and chaos of a new discrete fractional-order logistic map, Commun Nonlinear Sci Numer Simul, 57, 352-358 (2018) · Zbl 1510.37062
[20] Wu, G. C.; Baleanu, D., Discrete fractional logistic map and its chaos, Nonlinear Dyn, 75, 1-2, 283-287 (2014) · Zbl 1281.34121
[21] Wu, G. C.; Baleanu, D., Discrete chaos in fractional delayed logistic maps, Nonlinear Dyn, 80, 4, 1-7 (2014)
[22] Atangana, A., On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation, Appl Math Comput, 273, 948-956 (2016) · Zbl 1410.35272
[23] Li, Y.; Chen, Y.; Podlubny, I., Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput Math Appl, 59, 5, 1810-1821 (2010) · Zbl 1189.34015
[24] Wyrwas, M.; Mozyrska, D.; Girejko, E., Stability of discrete fractional-order nonlinear systems with the Nabla Caputo difference, IFAC Proc Vol, 46, 1, 167-171 (2013)
[25] Stanisławski, R.; Latawiec, K., Stability analysis for discretetime fractional-order LTI state-space systems. Part II: new stability criterion for FD-based systems, Bull Pol Acad Sci Tech Sci, 61, 2, 363-370 (2013)
[26] Mozyrska, D.; Wyrwas, M., The Z-transform method and delta type fractional difference operators, Discrete Dyn Nat Soc, 852734 (2015) · Zbl 1418.44003
[27] Mozyrska, D.; Wyrwas, M., Explicit criteria for stability of fractional h-difference two-dimensional systems, Int J Dyn Control, 5, 1, 1-6 (2017)
[28] Baleanu, D.; Wu, G. C.; Bai, Y. R.; Chen, F. L., Stability analysis of Caputo-like discrete fractional systems, Commun Nonlinear Sci Numer Simul, 48, 520-530 (2017) · Zbl 1510.39013
[29] Gallegos, J. A.; Duarte-Mermoud, M. A., On the Lyapunov theory for fractional order systems, Appl Math Comput, 287-288, 161-170 (2016) · Zbl 1410.34017
[30] Elsadany, A. A.; Elsonbaty, A.; Agiza, H. N., Qualitative dynamical analysis of chaotic plasma perturbations model, Commun Nonlinear Sci Numer Simul, 59, 409-423 (2018) · Zbl 1510.82047
[31] Krijnen, M. E.; Van Ostayen, R. A.J.; HosseinNia, H., The application of fractional order control for an air-based contactless actuation system, ISA Trans, 82, 172-183 (2018)
[32] Liu, H.; Pan, Y.; Li, S.; Ye, C., Adaptive fuzzy backstepping control of fractional-order nonlinear systems, IEEE Trans Syst Man Cybern, 47, 8, 2209-2217 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.