×

Scalar curvature in conformal geometry of Connes-Landi noncommutative manifolds. (English) Zbl 1373.53047

Summary: We first propose a conformal geometry for Connes-Landi noncommutative manifolds and study the associated scalar curvature. The new scalar curvature contains its Riemannian counterpart as the commutative limit. Similar to the results on noncommutative two tori, the quantum part of the curvature consists of actions of the modular derivation through two local curvature functions. Explicit expressions for those functions are obtained for all even dimensions (greater than two). In dimension four, the one variable function shows striking similarity to the analytic functions of the characteristic classes appeared in the Atiyah-Singer local index formula, namely, it is roughly a product of the \(j\)-function (which defines the \(\hat{A}\)-class of a manifold) and an exponential function (which defines the Chern character of a bundle). By performing two different computations for the variation of the Einstein-Hilbert action, we obtain deep internal relations between two local curvature functions. Straightforward verification for those relations gives a strong conceptual confirmation for the whole computational machinery we have developed so far, especially the Mathematica code hidden behind the paper.

MSC:

53C20 Global Riemannian geometry, including pinching
58B34 Noncommutative geometry (à la Connes)
53C80 Applications of global differential geometry to the sciences

References:

[1] Connes, Alain; Moscovici, Henri, Modular curvature for noncommutative two-tori, J. Amer. Math. Soc., 27, 3, 639-684 (2014) · Zbl 1332.46070
[2] Lesch, Matthias, Divided differences in noncommutative geometry: rearrangement lemma, functional calculus and expansional formula, J. Noncommut. Geom., 11, 1, 193-223 (2017) · Zbl 1373.46067
[3] Connes, Alain; Tretkoff, Paula, The Gauss-Bonnet theorem for the noncommutative two torus, (Noncommutative Geometry, Arithmetic, and Related Topics (2011), Johns Hopkins Univ. Press, Baltimore, MD), 141-158 · Zbl 1251.46037
[4] Fathizadeh, Farzad; Khalkhali, Masoud, The gauss-Bonnet theorem for noncommutative two tori with a general conformal structure, J. Noncommut. Geom., 6, 3, 457-480 (2012) · Zbl 1256.58002
[5] Fathizadeh, Farzad; Khalkhali, Masoud, Scalar curvature for the noncommutative two torus, J. Noncommut. Geom., 7, 4, 1145-1183 (2013) · Zbl 1295.46053
[6] Lesch, Matthias; Moscovici, Henri, Modular curvature and morita equivalence, Geom. Funct. Anal., 26, 3, 818-873 (2016) · Zbl 1375.46053
[7] Da̧browski, Ludwik; Sitarz, Andrzej, An asymmetric noncommutative torus, SIGMA Symmetry Integrability Geom. Methods Appl., 11 (2015), Paper 075, 11 · Zbl 1328.58005
[8] Da̧browski, Ludwik; Sitarz, Andrzej, Curved noncommutative torus and Gauss-Bonnet, J. Math. Phys., 54, 1, 013518, 11 (2013) · Zbl 1285.58014
[9] Fathizadeh, Farzad, On the scalar curvature for the noncommutative four torus, J. Math. Phys., 56, 6, 062303, 14 (2015) · Zbl 1327.58010
[10] Fathizadeh, Farzad; Khalkhali, Masoud, Scalar curvature for noncommutative four-tori, J. Noncommut. Geom., 9, 2, 473-503 (2015) · Zbl 1332.46071
[11] Connes, A., C*-algebres et géométrie différentielle, C. R. Acad. Sci. Paris Sér. AB, 290, 13, A599-A604 (1980) · Zbl 0433.46057
[12] Rosenberg, J., Levi-Civita’s theorem for noncommutative tori, SIGMA Symmetry Integrability Geom. Methods Appl., 9, 71 (2013) · Zbl 1291.46068
[13] Bhuyain, Tanvir Ahamed; Marcolli, Matilde, The Ricci flow on noncommutative two-tori, Lett. Math. Phys., 101, 2, 173-194 (2012) · Zbl 1261.53063
[14] Connes, Alain; Landi, Giovanni, Noncommutative manifolds, the instanton algebra and isospectral deformations, Comm. Math. Phys., 221, 1, 141-159 (2001) · Zbl 0997.81045
[15] Liu, Yang, Modular curvature for toric noncommutative manifolds, J. Noncommut. Geom. (2015), in press · Zbl 1403.46056
[16] Connes, Alain, Noncommutative Geometry, xiv+661 (1994), Academic Press, Inc., San Diego, CA · Zbl 0818.46076
[17] Connes, A.; Moscovici, H., The local index formula in noncommutative geometry, Geom. Funct. Anal., 5, 2, 174-243 (1995) · Zbl 0960.46048
[18] Connes, Alain; Moscovici, Henri, Type III and spectral triples, (Traces in Number Theory, Geometry and Quantum Fields. Traces in Number Theory, Geometry and Quantum Fields, Aspects Math., vol. E38 (2008), Friedr. Vieweg, Wiesbaden), 57-71 · Zbl 1159.46041
[19] Connes, A.; Marcolli, M., Noncommutative Geometry, Quantum Fields and Motives, Vol. 55 (2008), Amer Mathematical Society · Zbl 1209.58007
[20] Berline, Nicole; Getzler, Ezra; Vergne, Michele, Heat kernels and Dirac Operators (1992), Springer · Zbl 0744.58001
[22] Connes, Alain; Dubois-Violette, Michel, Noncommutative finite dimensional manifolds. II. Moduli space and structure of noncommutative 3-spheres, Comm. Math. Phys., 281, 1, 23-127 (2008) · Zbl 1159.58003
[23] Connes, Alain; Dubois-Violette, Michel, Noncommutative finite-dimensional manifolds. I. Spherical manifolds and related examples, Comm. Math. Phys., 230, 3, 539-579 (2002) · Zbl 1026.58005
[24] Rieffel, Marc A., Deformation quantization for actions of \(R^d\), Mem. Amer. Math. Soc., 106, 506, x+93 (1993) · Zbl 0798.46053
[25] Brain, Simon; Landi, Giovanni; van Suijlekom, Walter D., Moduli spaces of instantons on toric noncommutative manifolds, Adv. Theor. Math. Phys., 17, 5, 1129-1193 (2013) · Zbl 1307.81055
[26] Gayral, Victor; Iochum, Bruno; Várilly, Joseph C., Dixmier traces on noncompact isospectral deformations, J. Funct. Anal., 237, 2, 507-539 (2006) · Zbl 1106.46054
[27] Ćaćić, Branimir, A reconstruction theorem for Connes-Landi deformations of commutative spectral triples, J. Geom. Phys., 98, 82-109 (2015) · Zbl 1329.58002
[28] Yamashita, M., Connes-Landi deformation of spectral triples, Lett. Math. Phys., 94, 263-291 (2010) · Zbl 1207.58010
[29] Landi, Giovanni, Examples of noncommutative instantons, (Geometric and Topological Methods for Quantum Field Theory. Geometric and Topological Methods for Quantum Field Theory, Contemp. Math., vol. 434 (2007), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 39-72 · Zbl 1153.58003
[30] Da̧browski, Ludwik, Spinors and theta deformations, Russ. J. Math. Phys., 16, 3, 404-408 (2009) · Zbl 1183.58004
[31] Widom, Harold, A complete symbolic calculus for pseudodifferential operators, Bull. Sci. Math., 104, 1, 19-63 (1980) · Zbl 0434.35092
[32] Widom, Harold, Families of pseudodifferential operators, (Topics in Functional Analysis (Essays Dedicated To M.G. Kreĭn on the Occasion of His 70th Birthday). Topics in Functional Analysis (Essays Dedicated To M.G. Kreĭn on the Occasion of His 70th Birthday), Adv. in Math. Suppl. Stud., vol. 3 (1978), Academic Press: Academic Press New York-London), 345-395 · Zbl 0477.58035
[33] Bourguignon, Jean-Pierre; Gauduchon, Paul, Spineurs, opérateurs de Dirac et variations de métriques, Comm. Math. Phys., 144, 3, 581-599 (1992) · Zbl 0755.53009
[34] Chamseddine, Ali H.; Connes, Alain, Scale invariance in the spectral action, J. Math. Phys., 47, 6, 063504, 19 (2006) · Zbl 1112.83036
[35] Besse, Arthur L., Einstein manifolds, (Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10 (1987), Springer-Verlag, Berlin), xii+510 · Zbl 1147.53001
[36] Drager, Lance Douglas, On the intrinsic symbol Calculus for Pseudo-Differential Operatos on Manifolds, 204 (1978), Brandeis University, ProQuest LLC, Ann Arbor, MI, (Ph.D. thesis)
[37] Fulling, S. A.; Kennedy, G., The resolvent parametrix of the general elliptic linear differential operator: a closed form for the intrinsic symbol, Trans. Amer. Math. Soc., 310, 2, 583-617 (1988) · Zbl 0711.35155
[38] Roe, John, Elliptic Operators, Topology, and Asymptotic Methods (1999), CRC Press · Zbl 0654.58031
[39] Gilkey, Peter B.; Toledo, Domingo, Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem, Vol. 2 (1995), CRC press Boca Raton · Zbl 0856.58001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.