×

SURE-type functionals as criteria for parametric PSF estimation. (English) Zbl 1339.94014

Summary: Point spread function (PSF) estimation plays an important role in blind image deconvolution. This paper proposes two novel criteria for parametric PSF estimation, based on Stein’s unbiased risk estimate (SURE), namely, prediction-SURE and its variant. We theoretically prove the SURE-type functionals incorporating exact (complementary) smoother filtering as the valid criteria for PSF estimation. We also provide the theoretical error analysis for the regularizer approximations, by which we show that the proposed frequency-adaptive regularization term yields more accurate PSF estimate than others. In particular, the proposed SURE-variant enables us to avoid estimation of noise variance, which is a key advantage over the traditional SURE-like functional. Finally, we propose an efficient algorithm for the minimizations of the criteria. Not limited to the examples we show in this paper, the proposed SURE-based framework has a great potential for other imaging applications, provided the parametric PSF form is available.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
68U10 Computing methodologies for image processing

Software:

BM3D
Full Text: DOI

References:

[1] Allen, D.M.: Mean square error of prediction as a criterion for selecting variables. Technometrics 13(3), 469-475 (1971) · Zbl 0219.62013 · doi:10.1080/00401706.1971.10488811
[2] Babacan, S., Molina, R., Katsaggelos, A.: Variational Bayesian blind deconvolution using a total variation prior. IEEE Trans. Image Process. 18(1), 12-26 (2009) · Zbl 1371.94479 · doi:10.1109/TIP.2008.2007354
[3] Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183-202 (2009) · Zbl 1175.94009 · doi:10.1137/080716542
[4] Bishop, T., Babacan, S., Amizic, B., Katsaggelos, A., Chan, T., Molina, R.: Blind image deconvolution: problem formulation and existing approaches. In: Blind image deconvolution: theory and applications, pp. 1-23. CRC Press (2007) · Zbl 1291.65189
[5] Born, M., Wolf, E., Bhatia, A.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge University Press, Cambridge (1999) · Zbl 1430.78001 · doi:10.1017/CBO9781139644181
[6] Cao, Q.: Generalized Jinc functions and their application to focusing and diffraction of circular apertures. J. Opt. Soc. Am. A 20(4), 661-667 (2003) · doi:10.1364/JOSAA.20.000661
[7] Carasso, A.: Linear and nonlinear image deblurring: a documented study. SIAM J. Numer. Anal. 36, 1659-1689 (1999) · Zbl 1053.65084 · doi:10.1137/S0036142997320413
[8] Carasso, A.: The APEX method in image sharpening and the use of low exponent Lévy stable laws. SIAM J. Appl. Math. 63, 593-618 (2002) · Zbl 1046.68120 · doi:10.1137/S0036139901389318
[9] Chan, T., Wong, C.: Total variation blind deconvolution. IEEE Trans. Image Process. 7(3), 370-375 (1998) · doi:10.1109/83.661187
[10] Chen, F., Ma, J.: An empirical identification method of Gaussian blur parameter for image deblurring. IEEE Trans. Signal Process. 57(7), 2467-2478 (2009) · Zbl 1391.94062 · doi:10.1109/TSP.2009.2018358
[11] Danielyan, A., Katkovnik, V., Egiazarian, K.: BM3D frames and variational image deblurring. IEEE Trans. Image Process. 21(4), 1715-1728 (2012) · Zbl 1373.94096 · doi:10.1109/TIP.2011.2176954
[12] Donoho, D., Johnstone, J.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425-455 (1994) · Zbl 0815.62019 · doi:10.1093/biomet/81.3.425
[13] Eldar, Y.: Generalized SURE for exponential families: applications to regularization. IEEE Trans. Signal Process. 57(2), 471-481 (2009) · Zbl 1391.62131 · doi:10.1109/TSP.2008.2008212
[14] Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, vol. 2. Springer, New York (2009) · Zbl 1273.62005 · doi:10.1007/978-0-387-84858-7
[15] Kundur, D., Hatzinakos, D.: Blind image deconvolution. IEEE Signal Process. Mag. 13(3), 43-64 (1996) · doi:10.1109/79.489268
[16] Liao, H., Ng, M.K.: Blind deconvolution using generalized cross-validation approach to regularization parameter estimation. IEEE Trans. Image Process. 20(3), 3005-3019 (2011)
[17] Li, D., Simske, S.: Atmospheric turbulence degraded-image restoration by kurtosis minimization. IEEE Geosci. Remote Sens. Lett. 6(2), 244-247 (2009) · doi:10.1109/LGRS.2008.2011569
[18] Luisier, F.: The SURE-LET approach to image denoising. Ph.D. Thesis, École Polytechnique Fédérale de Lausanne (2010) · Zbl 1392.94041
[19] Michailovich, O., Tannenbaum, A.: Blind deconvolution of medical ultrasound images: a parametric inverse filtering approach. IEEE Trans. Image Process. 16(12), 3005-3019 (2007) · doi:10.1109/TIP.2007.910179
[20] Moffat, A.: A theoretical investigation of focal stellar images in the photographic emulsion and application to photographic photometry. Astron. Astrophys. 3, 455-461 (1969)
[21] Molina, R., Núñez, J., Cortijo, F., Mateos, J.: Image restoration in astronomy: a Bayesian perspective. IEEE Signal Process. Mag. 18(2), 11-29 (2001) · doi:10.1109/79.916318
[22] Molina, R., Mateos, J., Katsaggelos, A.: Blind deconvolution using a variational approach to parameter, image, and blur estimation. IEEE Trans. Image Process. 15(12), 3715-3727 (2006) · doi:10.1109/TIP.2006.881972
[23] Oliveira, J., Figueiredo, M., Bioucas-Dias, J.: Parametric blur estimation for blind restoration of natural images: linear motion and out-of-focus. IEEE Trans. Image Process. 23(1), 466-477 (2014) · Zbl 1374.94290 · doi:10.1109/TIP.2013.2286328
[24] Pan, H., Blu, T.: An iterative linear expansion of thresholds for \[\ell_1\] ℓ1-based image restoration. IEEE Trans. Image Process. 22(9), 3715-3728 (2013) · Zbl 1307.35312 · doi:10.1109/TIP.2013.2270109
[25] Pesquet, J., Benazza-Benyahia, A., Chaux, C.: A SURE approach for digital signal/image deconvolution problems. IEEE Trans. Signal Process. 57(12), 4616-4632 (2009) · Zbl 1392.94041 · doi:10.1109/TSP.2009.2026077
[26] Poropat, G.: Effect of system point spread function, apparent size, and detector instantaneous field of view on the infrared image contrast of small objects. Opt. Eng. 32(10), 2598-2607 (1993) · doi:10.1117/12.146388
[27] Reeves, S.J., Mersereau, R.M.: Blur identification by the method of generalized cross-validation. IEEE Trans. Image Process. 1(3), 301-311 (1992) · doi:10.1109/83.148604
[28] Sarder, P., Nehorai, A.: Deconvolution methods for 3-D fluorescence microscopy images. IEEE Signal Process. Mag. 23(3), 32-45 (2006) · doi:10.1109/MSP.2006.1628876
[29] Stein, C.: Estimation of the mean of a multivariate normal distribution. Ann. Stat. 9(6), 1135-1151 (1981) · Zbl 0476.62035 · doi:10.1214/aos/1176345632
[30] Vaiter, S., Deledalle, C., Peyré, G., Fadili, J., Dossal, C.: Local behavior of sparse analysis regularization: applications to risk estimation. Appl. Comput. Harmon. Anal. 35(3), 433-451 (2012) · Zbl 1291.65189 · doi:10.1016/j.acha.2012.11.006
[31] Vonesch, C., Ramani, S., Unser, M.: Recursive risk estimation for non-linear image deconvolution with a wavelet-domain sparsity constraint. In: 15th IEEE International Conference on Image Processing, pp. 665-668 (2008) · Zbl 1053.65084
[32] Xue, F., Blu, T.: SURE-based blind Gaussian deconvolution. In: 2012 IEEE Statistical Signal Processing Workshop (SSP), pp. 452-455. Ann Arbor, MI, USA, Aug 2012
[33] Xue, F., Blu, T.: SURE-based motion estimation. In: 2012 IEEE International Conference on Signal Processing, Communications and Computing, pp. 373-377. Hong Kong, Aug 2012
[34] Xue, F., Blu, T.: A novel SURE-based criterion for parametric PSF estimation. IEEE Trans. Image Process. 24(2), 595-607 (2015) · Zbl 1408.94875 · doi:10.1109/TIP.2014.2380174
[35] Xue, F., Yagola, A.G.: Analysis of point-target detection performance based on ATF and TSF. Infrared Phys. Technol. 52(5), 166-173 (2009) · doi:10.1016/j.infrared.2009.07.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.