×

Convergence to diffusion waves for solutions of 1D Keller-Segel model. (English) Zbl 07781767

Summary: In this paper, we are concerned with the asymptotic behavior of solutions to the Cauchy problem (or initial-boundary value problem) of one-dimensional Keller-Segel model. For the Cauchy problem, we prove that the solutions time-asymptotically converge to the nonlinear diffusion wave whose profile is self-similar solution to the corresponding parabolic equation, which is derived by Darcy’s law. For the initial-boundary value problem, we consider two cases: Dirichlet boundary condition and null-Neumann boundary condition on \(\left(u,\rho \right)\). In the case of Dirichlet boundary condition, similar to the Cauchy problem, the asymptotic profile is still the self-similar solution of the corresponding parabolic equation, which is derived by Darcy’s law; thus, we only need to deal with boundary effect. In the case of null-Neumann boundary condition, the global existence and asymptotic behavior of solutions near constant steady states are established. The proof is based on the elementary energy method and some delicate analysis of the corresponding asymptotic profiles.
{© 2022 John Wiley & Sons, Ltd.}

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35K45 Initial value problems for second-order parabolic systems
35K51 Initial-boundary value problems for second-order parabolic systems
92C17 Cell movement (chemotaxis, etc.)

References:

[1] KellerEF, SegelLA. Initiation of slime mold aggregation viewd as an instability. J Theor Biol. 1970;26:399‐415. · Zbl 1170.92306
[2] OsakiK, YagiA. Finite dimensional attractor for one‐dimensional Keller‐Segel equations. Funkc Ekvac. 2001;44:441‐469. · Zbl 1145.37337
[3] IwasakiS, OsakiK, YagiA. Asymptotic convergence of solutions for one‐dimensional Keller‐Segel equations. arXiv:02676; 2009.
[4] NagaiT, YamadaT. Large time behavior of bounded solutions to a parabolic system of chemotaxis in the whole space. J Math Anal Appl. 2007;336:704‐726. · Zbl 1140.35006
[5] NagaiT, SyukuinnR, UmesakoM. Decay properties asymptotic profiles of bounded solutions to a parabolic system of chemotaxis in
[( \mathbb{R}{,}^n \]\). Funkcial Ekvac. 2003;46:383‐407. · Zbl 1330.35476
[6] CalvezV, CorriasL. The parabolic‐parabolic Keller‐Segel model in
[( {\mathbb{R}}^2 \]\). Commun Math Sci. 2008;6:417‐447. · Zbl 1149.35360
[7] MizoguchiN. Global existence for the Cauchy problem of the parabolic‐parabolic Keller‐Segel system on the plane. Calc Var Partial Differ Equ. 2013;48:491‐505. · Zbl 1288.35286
[8] BilerP, GuerraI, KarchG. Large global‐in‐time solutions of the parabolic‐parabolic Keller‐Segel system on the plane. Comm Pure Appl Anal. 2015;14:2117‐2126. · Zbl 1326.35398
[9] CorriasL, PerthameB. Critical space for the parabolic‐parabolic Keller‐Segel model in
[( {\mathbb{R}}^d \]\). CR Math Acad Sci Paris. 2006;342:745‐750. · Zbl 1097.35066
[10] CaoX. Global bounded solutions of the higher‐dimensional Keller‐Segel system under smallness conditions in optimal spaces. Discrete Contin Dynam Syst Ser A. 2015;35:1891‐1904. · Zbl 1515.35047
[11] WinklerM. Aggregation vs. global diffusive behavior in the higher‐dimensional Keller‐Segel model. J Differ Equ. 2010;248:2889‐2905. · Zbl 1190.92004
[12] WinklerM. Finite‐time blow‐up in the higher‐dimensional parabolic‐parabolic Keller‐Segel system. J Math Pures Appl. 2013;100:748‐767. · Zbl 1326.35053
[13] GajewskiH, ZachariasK. Global behaviour of a reaction‐diffusion sysetm modeling chemotaxis. Math Nachr. 1998;195:77‐114. · Zbl 0918.35064
[14] HerreroMA, VelazquezJL. A blow‐up mechanism for a chemotaxis model. Ann Sc Norm Super Pisa C1 Sci. 1997;24:633‐683. · Zbl 0904.35037
[15] HorstmannD. From 1970 until present: the Keller‐Segel model in chemotaxis and its consequences I. Jahresberichte DMV. 2003;105:103‐165. · Zbl 1071.35001
[16] NagaiT, SenbaT, YoshidaK. Application of the Trudinger‐Moser inequality to a parabolic system of chemotaxis. Funkcial Ekvac Ser Int. 1997;40:411‐433. · Zbl 0901.35104
[17] SchaafR. Stationary solutions of chemotaxis systems. Trans Amer Math Soc. 1985;292:531‐556. · Zbl 0637.35007
[18] HsiaoL, LiuTP. Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping. Comm Math Phys. 1992;143:599‐605. · Zbl 0763.35058
[19] NishiharaK. Convergence rates to nonlinear diffusion waves for solutions of system of hyperbolic conservation laws with damping. J Differ Equ. 1996;131:171‐188. · Zbl 0866.35066
[20] NishiharaK, WangWK, YangT.
[( {L}^p \]\)‐convergence rate to nonlinear diffusion waves for p‐system with damping. J Differ Equ. 2000;161:191‐218. · Zbl 0946.35012
[21] GengS, WangZ. Convergence rates to nonlinear diffusion waves for solutions to the system of compressible adiabatic flow through porous media. Comm Partial Differ Equ. 2010;36:850‐872. · Zbl 1252.35181
[22] HuangFM, PanRH. Convergence rate for compressible Euler equations with damping and vacuum. Arch Ration Mech Anal. 2003;166:359‐376. · Zbl 1022.76042
[23] HuangFM, PanRH. Asymptotic behavior of the solutions to the damped compressible Euler equations with vacuum. J Differ Equ. 2006;220:207‐233. · Zbl 1082.35031
[24] MeiM. Best asymptotic profile for hyperbolic p‐system with damping, SIAM. J Math Anal. 2010;42:1‐23. · Zbl 1218.35141
[25] WangWK, YangT. Pointwise estimates and
[( {L}^p, \]\) convergence rates to diffusion waves for p‐system with damping. J Differ Equ. 2003;187:310‐336. · Zbl 1035.35077
[26] NishiharaK, YangT. Boundary effect on asymptotic behavior of solutions to the p‐system with linear damping. J Differ Equ. 1999;156:439‐458. · Zbl 0933.35121
[27] MarcatiP, MeiM, RubinoB. Optimal convergence rates to diffusion waves for solutions of the hyperbolic conservation laws with damping. J Math Fluid Mech. 2005;7:224‐240. · Zbl 1162.76393
[28] JiangMN, ZhuCJ. Convergence to strong nonlinear diffusion waves for solutions to p‐system with damping on quadrant. J Differ Equ. 2009;246:50‐77. · Zbl 1169.35039
[29] LinCK, LinCT, MeiM. Asymptotic behavior of solution to nonlinear damped p‐system with boundary effect. Internat J Numer Anal Model Ser B. 2010;1:70‐93. · Zbl 1255.35045
[30] MaH, MeiM. Best asymptotic profile for linear damped p‐system with boundary effect. J Differ Equ. 2010;249:446‐484. · Zbl 1201.35131
[31] MarcatiP, MeiM. Convergence to nonlinear diffusion waves for solutions of the initial‐boundary problem to the hyperbolic conservation laws with damping. Quart Appl Math. 2000;58:763‐784. · Zbl 1040.35044
[32] HuangFM, LiJ, MatsumuraA. Asymptotic stability combination of viscous contact wave with rarefaction waves for one‐dimensional compressible Navier‐Stokes system. Arch Ration Mech Anal. 2010;197:89‐116. · Zbl 1273.76259
[33] AtkinsonFV, PeletierLA. Similarity solutions of the nonlinear diffusion equation. Arch Ration Mech Anal. 1974;54:373‐392. · Zbl 0293.35039
[34] vanDuynCJ, PeletierLA. A class of similarity solutions of nonlinear diffusion equation. Nonlinear Anal. 1977;1:223‐233. · Zbl 0394.34016
[35] MatsumuraA, NishiharaK. Asymptotics toward the rarefaction waves of the solutions of a one‐dimensional model system for compressible viscous gas, Japan. J Appl Math. 1986;3:1‐13. · Zbl 0612.76086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.