×

On the index-\(r\)-free sequences over finite cyclic groups. (English) Zbl 1428.11027

Summary: Let \(C_n\) be a finite cyclic group of order \(n \geq 2\). Every sequence \(S\) over \(C_n\) can be written in the form \(S = (n_1 g), \dots,(n_l g)\) where \(g \in C_n\) and \(n_1, \dots, n_l \in [1, \mathrm{ord}(g)]\), and the index \(\mathrm{ind}(S)\) of \(S\) is defined as the minimum of \((n_1 + \cdots + n_l) / \mathrm{ord}(g)\) over all \(g \in C_n\) with \(\mathrm{ord}(g) = n\). Let \(d > 1\) and \(r \geq 1\) be any fixed integers. We prove that, for every sufficiently large integer \(n\) divisible by \(d\), there exists a sequence \(S\) over \(C_n\) of length \(| S | \geq n + n / d + O(\sqrt{n})\) having no subsequence \(T\) of index \(\mathrm{ind}(T) \in [1, r]\), which has substantially improved the previous results in this direction.

MSC:

11B30 Arithmetic combinatorics; higher degree uniformity
11B50 Sequences (mod \(m\))
20K01 Finite abelian groups
Full Text: DOI

References:

[1] Chapman, S. T.; Freeze, M.; Smith, W. W., Minimal zero sequences and the strong Davenport constant, Discrete Math., 203, 271-277, (1999) · Zbl 0944.20013
[2] Chapman, S. T.; Smith, W. W., A characterization of minimal zero-sequences of index one in finite cyclic groups, Integers, 5, 1, 5, (2005) · Zbl 1134.11306
[3] Gao, W., Zero sums in finite cyclic groups, Integers, 0, 9, (2000)
[4] Gao, W.; Geroldinger, A., On products of \(k\) atoms, Monatsh. Math., 156, 141-157, (2009) · Zbl 1184.20051
[5] Gao, W.; Li, Y.; Peng, J.; Plyley, C.; Wang, G., On the index of sequences over cyclic groups, Acta Arith., 148, 2, 119-134, (2011) · Zbl 1284.11021
[6] Ge, F., Note on the index conjecture in zero-sum theory and its connection to a Dedekind-type sum, J. Number Theory, 168, 128-134, (2016) · Zbl 1377.11022
[7] Geroldinger, A., Number Theory, 51, On non-unique factorizations into irreducible elements. II, 723-757, (1990), North Holland · Zbl 0703.11057
[8] Geroldinger, A.; Geroldinger, A.; Ruzsa, I., Combinatorial Number Theory and Additive Group Theory, Additive group theory and non-unique factorizations, 1-86, (2009), Birkhäuser · Zbl 1221.20045
[9] Lemke, P.; Kleitman, D., An addition theorem on the integers modulo \(n\), J. Number Theory, 31, 335-345, (1989) · Zbl 0672.10038
[10] Li, Y.; Plyley, C.; Yuan, P.; Zeng, X., Minimal zero-sum sequences of length four over finite cyclic groups, J. Number Theory, 130, 2033-2048, (2010) · Zbl 1204.11021
[11] Ponomarenko, V., Minimal zero sequences of finite cyclic groups, Integers, 4, 6, (2004) · Zbl 1083.11015
[12] Savchev, S.; Chen, F., Long zero-free sequences in finite cyclic groups, Discrete Math., 307, 2671-2679, (2007) · Zbl 1148.20038
[13] Xia, X.; Yuan, P., Indexes of unsplitable minimal zero-sum sequences of length \(l(C_n) - 1\), Discrete Math., 310, 1127-1133, (2010) · Zbl 1205.11029
[14] Yuan, P., On the index of minimal zero-sum sequences over finite cyclic groups, J. Combin. Theory Ser. A, 114, 1545-1551, (2007) · Zbl 1128.11011
[15] Yuan, P.; Li, Y., Long unsplittable zero-sum sequences over a finite cyclic group, Int. J. Number Theory, 12, 4, 979-993, (2016) · Zbl 1415.11038
[16] Zeng, X.; Yuan, P.; Li, Y., On a conjecture of Lemke and kleitman, Acta Arith., 168, 3, 289-299, (2015) · Zbl 1362.11024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.