×

A multiplicative property for zero-sums. II. (English) Zbl 1502.11018

Let \(G = C_n \oplus C_{nm}\) be an abelian group of rank \(2\), and let \(0 \leq k < n\). It is known that any sequence of \(mn+n-1+k\) elements from \(G\) must contain a zero-sum subsequence of size at most \(mn+n-1-k\). This leads to the inverse problem: what is the structure of a sequence of \(mn+n-2+k\) elements without any zero-sum subsequence of size at most \(mn+n-1-k\)? The answer is known for \(k = 0,1\) and for \(k = n-1\), see the references in the paper.
For \(2 \leq k < n-1\), it is conjectured that a sequence satisfying this condition will have the form \(S=g_1^{[n-1]}g_2^{[sn-1]}(g_1+g_2)^{[(m-s)n+k]}\) for some generating pair \(g_1,g_2\) and some \(1 \leq s \leq m\) (see Theorem 2 for the somewhat more precise statement). The main result in this paper is a reduction of this problem to the case of \(G = C_n \oplus C_n\), as stated in Conjecture 1 (which should be read with \(m = 1\)). In turn, the multiplicativity theorem of Part I [the authors, Discrete Math. 345, No. 10, Article ID 112974, 21 p. (2022; Zbl 1502.11017)] reduces the inverse problem for \(G = C_n \oplus C_n\) to the case of \(n\) being a prime.

MSC:

11B13 Additive bases, including sumsets
11B75 Other combinatorial number theory
11B30 Arithmetic combinatorics; higher degree uniformity
11P70 Inverse problems of additive number theory, including sumsets
05B10 Combinatorial aspects of difference sets (number-theoretic, group-theoretic, etc.)

Citations:

Zbl 1502.11017

References:

[1] P. Baginski, A. Geroldinger, D. J. Grynkiewicz and A. Philipp, Products of two atoms in Krull monoids and arithmetical characterizations of class groups,Eur. J. Comb.34 (2013), no. 8, 1244-1268. · Zbl 1309.20050
[2] G. Bhowmik, I. Halupczok, J. C. Schlage-Puchta, The structure of maximal zero-sum free sequences,Acta Arith.143 (2010), no. 1, 21-50. · Zbl 1260.11008
[3] G. Cohen and G. Zemor, Subset sums and coding theory,Ast´erisque258 (1999) 327-339. · Zbl 1044.94016
[4] C. Delorme, O. Ordaz and D. Quiroz, Some remarks on Davenport constant,Discrete Math.237 (2001), 119-128. · Zbl 1003.20025
[5] P. van Emde Boas, A combinatorial problem on finite abelian groups II,Math. Centrum Amsterdam Afd. Zuivere Wisk., 1969(ZW-007):60pp., 1969. · Zbl 0203.32703
[6] P. van Emde Boas and D. Kruyswijk, A combinatorial problem on finite abelian groups,Math. Centrum Amsterdam Afd. Zuivere Wisk.1967 (1967), ZW-009, 27 pp. · Zbl 0189.31703
[7] M. Freeze and W. Schmid, Remarks on a generalization of the Davenport constant, Discrete Math.310 (2010), 3373-3389. · Zbl 1228.05302
[8] W. Gao and A. Geroldinger, On zero-sum sequences inZ/nZ⊕Z/nZ,Integers3 (2003), #A8.
[9] W. Gao and A. Geroldinger, On long minimal zero sequences in finite abelian groups, Period. Math. Hung.38 (1999), 179-211. · Zbl 0980.11014
[10] W. Gao, A. Geroldinger, D. J. Grynkiewicz, Inverse zero-sum problems III,Acta Arith.141 (2010), no. 3, 103-152. · Zbl 1213.11178
[11] W. Gao, Y. Li, C. Liu and Y. Qu, Product-one subsequences over subgroups of a finite group,Acta Arith.189 (2019), 209-221. · Zbl 1443.20034
[12] A. Geroldinger, D. J. Grynkiewicz and P. Yuan, On products ofkatoms II,Mosc. J. Comb. Number Theory5 (2015), no. 3, 3-59. · Zbl 1381.20047
[13] A. Geroldinger, D. J. Grynkiewicz and W. A Schmid, Zero-sum problems with congruence conditions,Acta Math. Hungar.131 (2011), no. 4, 323-345. · Zbl 1259.11020
[14] A. Geroldinger and F. Halter-Koch,Non-unique factorizations: Algebraic, combinatorial and analytic theory, Pure and Applied Mathematics, vol. 278, Chapman and Hall/CRC, 2006. · Zbl 1113.11002
[15] A. Geroldinger and I. Ruzsa,Combinatorial number theory and additive group theory, Courses and seminars from the DocCourse in Combinatorics and Geometry held in Barcelona, 2008. Advanced Courses in Mathematics. CRM Barcelona. Birkh¨auser Verlag, Basel, 2009. xii+330 pp.
[16] A. Geroldinger and W. A. Schmid, A characterization of class groups via sets of lengths,J. Korean Math. Soc.56 (2019), no. 4, 869-915. · Zbl 1447.11011
[17] B. Girard, On the existence of zero-sum subsequences of distinct lengths,Rocky Mountain J. Math.42 (2012), no. 2, 583-596. · Zbl 1247.11016
[18] D. J. Grynkiewicz, Representing sequence subsums as sumsets of near equal sized sets, inCombinatorial Number Theory IV, ed. M. Nathanson, Springer (2021), Ch. 11.
[19] D. Grynkiewicz,Structural additive theory, Developments in Mathematics 30 (2013), Springer. · Zbl 1368.11109
[20] D. J. Grynkiewicz, Inverse zero-sum problems III: Addendum,arXiv:2107.10619. · Zbl 1213.11178
[21] D. J. Grynkiewicz and Chao Liu, A multiplicative property for zero-sums I,Discrete Math.345 (2022), 112974. · Zbl 1502.11017
[22] D. J. Grynkiewicz and U. Vishne, The index of small length sequences,International J. Algebra and Computation30 (2020), 977-1014. · Zbl 1460.11031
[23] D. J. Grynkiewicz, Chunlin Wang and Kevin Zhao, The structure of a sequence with prescribed zero-sum subsequences,Integers20 (2020), Paper No. A3, 31 pp. · Zbl 1465.11049
[24] J. E. Olson, A combinatorial problem on finite abelian groups I.J. Number Theory 1 (1969), 8-10. · Zbl 0169.02003
[25] J. E. Olson, A combinatorial problem on finite abelian groups II.J. Number Theory 1 (1969), 195-199. · Zbl 0167.28004
[26] O. Ordaz, A. Philipp, I. Santos and W. A. Schmid, On the Olson and the strong Davenport constants,J. Th´eor. Nombres Bordeaux23 (2011), no. 3, 715-750. · Zbl 1252.11011
[27] J. Peng, Y. Qu and Y. Li, Inverse problems associated with subsequence sums in Cp⊕Cp,Front. Math. China15 (2020), no. 5, 985-1000. · Zbl 1461.11134
[28] C. Reiher,A proof of the theorem according to which every prime number possesses Property B, Ph.D Dissertation, University of Rostock, 2010.
[29] B. Roy and R. Thangadurai, On zero-sum subsequences in a finite abelianp-group of length not exceeding a given number,J. Number Theory191 (2018), 246-257. · Zbl 1444.11023
[30] W. A. Schmid, Restricted inverse zero-sum problems in groups of rank 2,Q. J. Math. 63 (2012), no. 2, 477-487. · Zbl 1252.20026
[31] W. A. Schmid, Inverse zero-sum problems II,Acta Arith.143 (2010), no. 4, 333-343. · Zbl 1219.11151
[32] C. Wang and K. Zhao, On zero-sum subsequences of length not exceeding a given number,J · Zbl 1422.11057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.