×

A new commutator method for averaging lemmas. (English) Zbl 1491.35384

Summary: This document corresponds to the talk that the first author gave at the Laurent Schwartz seminar on March 10th 2020. It introduces, in a simplified setting, a novel commutator method to obtain averaging lemma estimates. Averaging lemmas are a type regularizing effect on averages in velocity of solutions to kinetic equations. We introduce a new bilinear approach that naturally leads to velocity averages in \(L^2([0,T], H^s_x)\). The new method outperforms classical averaging lemma results when the right-hand side of the kinetic equation has enough integrability. It also allows a perturbative approach to averaging lemmas which provides, for the first time, explicit regularity results for non-homogeneous velocity fluxes.

MSC:

35Q49 Transport equations
35B65 Smoothness and regularity of solutions to PDEs
35B20 Perturbations in context of PDEs
82C40 Kinetic theory of gases in time-dependent statistical mechanics
Full Text: DOI

References:

[1] V.I. Agoshkov. Spaces of functions with differential-difference characteristics and the smoothness of solutions of the transport equation. Dokl. Akad. Nauk SSSR, 276(6):1289-1293, 1984. · Zbl 0599.35009
[2] D. Arsénio, N. Lerner. An energy method for averaging lemmas. . · Zbl 1478.35062
[3] D. Arsénio, L. Saint-Raymond. Compactness in kinetic transport equations and hypoellipticity. J. Funct. Anal., 261(10), (2011), 3044-3098. · Zbl 1231.42023
[4] D. Arsénio, N. Masmoudi, A new approach to velocity averaging lemmas in Besov spaces, J. Math. Pures Appl.(9) 101 (2014), no. 4, 495-551. · Zbl 1293.35192
[5] D. Arsénio, N. Masmoudi. Maximal gain of regularity in velocity averaging lemmas, Analysis and PDE, Vol. 12 (2019), No. 2, 333-388. · Zbl 1404.35076
[6] M. Bézard, Régularité \(\) précisée des moyennes dans les équations de transport, Bull. Soc. Math. France, 122(1) (1994) 29-76. · Zbl 0798.35025
[7] F. Bouchut, Hypoelliptic regularity in kinetic equations, J. Math. Pures Appl. (9) 81 (11) (2002) 1135-1159. · Zbl 1045.35093
[8] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Viriel, Morawetz, and interaction Morawetz inequalities. · Zbl 1178.35345
[9] R.J. DiPerna, P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989), 511-547. · Zbl 0696.34049
[10] R.J. DiPerna, P.-L. Lions, Global weak solutions of Vlasov-Maxwell systems, Comm. Pure Appl. Math. 42 (1989), 729-757. · Zbl 0698.35128
[11] R. J. DiPerna, P.-L. Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math. .2/ 130:2 (1989), 321-366. · Zbl 0698.45010
[12] R. J. DiPerna, P.-L. Lions, Y. Meyer, \(\) regularity of velocity averages. Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), no. 3-4, 271-287. · Zbl 0763.35014
[13] C. De Lellis, M. Westdickenberg, On the optimality of velocity averaging lemmas, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), no. 6, 1075-1085. · Zbl 1041.35019
[14] R. DeVore, G. Petrova, The averaging lemma, J. Amer. Math. Soc. 14 (2001), no. 2, 279-296. · Zbl 1001.35079
[15] S. Doi, On the Cauchy problem for Schrödinger type equations and the regularity of the solutions. J. Math. Kyoto Univ. 34 (1994), no. 2, 319-328. · Zbl 0807.35026
[16] D. Han-Kwan, \(\) averaging lemma for transport equations with Lipschitz force fields, Kinet. Relat. Models 3 (4) (2010) 669-683. · Zbl 1209.35139
[17] M. Escobedo, S. Mischler and M. Valle (2003), Homogeneous Boltzmann equation in quantum relativistic kinetic theory, Vol. 4 of Electronic Journal of Differential Equations. Monograph, Southwest Texas State University, San Marcos, TX. · Zbl 1103.82022
[18] F. Golse, P.-L. Lions, B. Perthame, R. Sentis, Regularity of the moments of the solution of a transport equation, J. Funct. Anal. 76 (1988), no. 1, 110-125. · Zbl 0652.47031
[19] F. Golse, F. Poupaud, Limite fluide des équations de Boltzmann des semiconducteurs pour une statistique de Fermi-Dirac, Asymptotic Anal. 6 (1992) 135-160. · Zbl 0784.35084
[20] F. Golse, L. Saint-Raymond, Hydrodynamic limits for the Boltzmann equation, Riv. Mat. Univ. Parma 4 (2005), 1-144. · Zbl 1109.35112
[21] F. Golse, B. Perthame, Optimal regularizing effect for scalar conservation laws, Rev. Mat. Iberoam., 29 (2013), no. 4, 1477-1504. · Zbl 1288.35343
[22] F. Golse and L. Saint-Raymond, Velocity averaging in \(\) for the transport equation, C. R. Acad. Sci. Paris Ser. I Math, 334 (2002), 557-562. · Zbl 1154.35326
[23] F. Golse, Fluid dynamic limits of the kinetic theory of gases, From particle systems to partial differential equations. Springer, Berlin, Heidelberg, (2014), 3-91. · Zbl 1319.35155
[24] I. Gasser, P. Markowich, B. Perthame, Dispersion and Moments Lemma revisited, J. Differential Equations 156 (1999), 254-281. · Zbl 0931.35135
[25] L. Hörmander, Hypoelliptic second order differential equations. Acta Mathematica 119.1 (1967) 147-171. · Zbl 0156.10701
[26] P.-E. Jabin, H.-Y. Lin, E. Tadmor, Commutator Method for Averaging Lemmas. .
[27] P.-E. Jabin, H.-Y. Lin, E. Tadmor, Averaging Lemmas with inhomogeneous velocity fluxes. In preparation.
[28] P.-E. Jabin, B. Perthame, Compactness in Ginzburg-Landau energy by kinetic averaging, Comm. Pure Appl. Math. 54 (9) (2001) 1096- 1109. · Zbl 1124.35312
[29] K. Kunihiko, The Cauchy problem for Schrödinger type equations with variable coefficients. J. Math. Soc. Japan 50 (1998), no. 1, 179-202. · Zbl 0917.35129
[30] P.-L. Lions, B. Perthame, E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related equations. J. Amer. Math. Soc. 7 (1994), no. 1, 169-191. · Zbl 0820.35094
[31] P.-L. Lions, B. Perthame, E. Tadmor, Kinetic formulation of the isentropic gas dynamics and p-systems, Comm. Math. Phys. 163 (1994) 415-431 · Zbl 0799.35151
[32] N. Masmoudi, M. L. Tayeb, Diffusion limit of a semiconductor Boltzmann-Poisson system. SIAM Journal on Mathematical Analysis 38.6 (2007) 1788-1807. · Zbl 1206.82133
[33] B. Perthame, Kinetic formulation of conservation laws. Oxford Lecture Series in Mathematics and Its Applications, 21. Oxford University Press, Oxford, (2002). · Zbl 1030.35002
[34] G. Staffilani, D. Tataru, Strichartz estimates for a Schrödinger operator with nonsmooth coefficients, Comm. Partial Differential Equations 27 (2002), no. 7-8, 1337-1372 · Zbl 1010.35015
[35] E. M. Stein. Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J., (1970). · Zbl 0207.13501
[36] L. Saint-Raymond, Hydrodynamic limits of the Boltzmann equation, Springer Science and Business Media, no. 1971, (2009). · Zbl 1171.82002
[37] E. Tadmor, T. Tao, Velocity averaging, kinetic formulations, and regularizing effects in quasi-linear PDEs, Comm. Pure Appl. Math. 60 (2007), no. 10, 1488-1521. · Zbl 1131.35004
[38] M. Westdickenberg, Some new velocity averaging results. SIAM J. Math. Anal. 33 (2002), no. 5, 1007-1032. · Zbl 1067.35021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.