×

Memory-driven movement model for periodic migrations. (English) Zbl 1457.92199

Summary: We propose a model for memory-based movement of an individual. The dynamics are modeled by a stochastic differential equation, coupled with an eikonal equation, whose potential depends on the individual’s memory and perception. Under a simple periodic environment, we discover that both long and short-term memory with appropriate time scales are essential for producing expected periodic migrations.

MSC:

92D50 Animal behavior
35Q92 PDEs in connection with biology, chemistry and other natural sciences
35R60 PDEs with randomness, stochastic partial differential equations

References:

[1] Abrahms, B.; Hazen, E. L.; Aikens, E. O.; Savoca, M. S.; Goldbogen, J. A.; Bograd, S. J.; Jacox, M. G.; Irvine, L. M.; Palacios, D. M.; Mate, B. R., Memory and resource tracking drive blue whale migrations, Proceedings of the National Academy of Sciences, 116, 12, 5582-5587 (2019)
[2] Amadori, D.; Goatin, P.; Rosini, M. D., Existence results for Hughes’ model for pedestrian flows, Journal of Mathematical Analysis and Applications, 420, 1, 387-406 (2014) · Zbl 1310.35163
[3] Bardi, M.; Capuzzo-Dolcetta, I., Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations (2008), Springer Science & Business Media · Zbl 1134.49022
[4] Bartlam-Brooks, H. L.; Beck, P. S.; Bohrer, G.; Harris, S., In search of greener pastures: Using satellite images to predict the effects of environmental change on zebra migration, Journal of Geophysical Research: Biogeosciences, 118, 4, 1427-1437 (2013)
[5] Bennett, D. A.; Tang, W., Modelling adaptive, spatially aware, and mobile agents: Elk migration in yellowstone, International Journal of Geographical Information Science, 20, 9, 1039-1066 (2006)
[6] Berbert, J. M.; Fagan, W. F., How the interplay between individual spatial memory and landscape persistence can generate population distribution patterns, Ecological Complexity, 12, 1-12 (2012)
[7] Bracis, C.; Mueller, T., Memory, not just perception, plays an important role in terrestrial mammalian migration, Proceedings of the Royal Society B: Biological Sciences, 20170449 (2017)
[8] Cantrell, R. S.; Cosner, C.; Lou, Y., Evolution of dispersal and the ideal free distribution, Mathematical Biosciences and Engineering, 7, 1, 17-36 (2010) · Zbl 1188.35102
[9] Cartee, E., Vladimirsky, A., 2018. Anisotropic challenges in pedestrian flow modeling, arXiv preprint arXiv:1706.06217. · Zbl 1404.35283
[10] Chacon, A.; Vladimirsky, A., Fast two-scale methods for eikonal equations, SIAM Journal on Scientific Computing, 34, 2, A547-A578 (2012) · Zbl 1244.49047
[11] Di Francesco, M.; Markowich, P. A.; Pietschmann, J.-F.; Wolfram, M.-T., On the hughes’ model for pedestrian flow: The one-dimensional case, Journal of Differential Equations, 250, 3, 1334-1362 (2011) · Zbl 1229.35139
[12] Fagan, W. F., Migrating whales depend on memory to exploit reliable resources, Proceedings of the National Academy of Sciences, 116, 12, 5217-5219 (2019)
[13] Fagan, W. F.; Lewis, M. A.; Auger-Méthé, M.; Avgar, T.; Benhamou, S.; Breed, G.; LaDage, L.; Schlägel, U. E.; Tang, W.-W.; Papastamatiou, Y. P., Spatial memory and animal movement, Ecology Letters, 16, 10, 1316-1329 (2013)
[14] Fagan, W. F.; Gurarie, E.; Bewick, S.; Howard, A.; Cantrell, R. S.; Cosner, C., Perceptual ranges, information gathering, and foraging success in dynamic landscapes, The American Naturalist, 189, 5, 474-489 (2017)
[15] Gill, F. B., Trapline foraging by hermit hummingbirds: competition for an undefended, renewable resource, Ecology, 69, 6, 1933-1942 (1988)
[16] Hughes, R. L., A continuum theory for the flow of pedestrians, Transportation Research Part B: Methodological, 36, 6, 507-535 (2002)
[17] Hughes, R. L., The flow of human crowds, Annual Review of Fluid Mechanics, 35, 1, 169-182 (2003) · Zbl 1125.92324
[18] Jesmer, B. R.; Merkle, J. A.; Goheen, J. R.; Aikens, E. O.; Beck, J. L.; Courtemanch, A. B.; Hurley, M. A.; McWhirter, D. E.; Miyasaki, H. M.; Monteith, K. L.; Kauffman, M. J., Is ungulate migration culturally transmitted? evidence of social learning from translocated animals, Science, 361, 6406, 1023-1025 (2018)
[19] Kitchin, R., Blades, M., 2002. The Cognition of Geographic Space, vol. 4, Ib Tauris.
[20] Lam, K.-Y.; Lou, Y., Evolution of conditional dispersal: evolutionarily stable strategies in spatial models, Journal of Mathematical Biology, 68, 4, 851-877 (2014) · Zbl 1293.35140
[21] Martínez-García, R.; Calabrese, J. M.; Mueller, T.; Olson, K. A.; López, C., Optimizing the search for resources by sharing information: Mongolian gazelles as a case study, Physical Review Letters, 110, 24, Article 248106 pp. (2013)
[22] Osborne, J.; Clark, S.; Morris, R.; Williams, I.; Riley, J.; Smith, A.; Reynolds, D.; Edwards, A., A landscape-scale study of bumble bee foraging range and constancy, using harmonic radar, Journal of Applied Ecology, 36, 4, 519-533 (1999)
[23] Schlägel, U. E.; Lewis, M. A., Detecting effects of spatial memory and dynamic information on animal movement decisions, Methods in Ecology and Evolution, 5, 11, 1236-1246 (2014)
[24] Schlägel, U. E.; Merrill, E. H.; Lewis, M. A., Territory surveillance and prey management: Wolves keep track of space and time, Ecology and Evolution, 7, 20, 8388-8405 (2017)
[25] Sethian, J. A., A fast marching level set method for monotonically advancing fronts, Proceedings of the National Academy of Sciences, 93, 4, 1591-1595 (1996) · Zbl 0852.65055
[26] Teitelbaum, C. S.; Converse, S. J.; Fagan, W. F.; Böhning-Gaese, K.; O’Hara, R. B.; Lacy, A. E.; Mueller, T., Experience drives innovation of new migration patterns of whooping cranes in response to global change, Nature Communications, 7, 1, 1-7 (2016)
[27] Twarogowska, M.; Goatin, P.; Duvigneau, R., Macroscopic modeling and simulations of room evacuation, Applied Mathematical Modelling, 38, 24, 5781-5795 (2014) · Zbl 1428.90038
[28] Xia, Y.; Wong, S.; Shu, C.-W., Dynamic continuum pedestrian flow model with memory effect, Physical Review E, 79, 6, Article 066113 pp. (2009)
[29] Zhao, H., A fast sweeping method for eikonal equations, Mathematics of Computation, 74, 250, 603-627 (2005) · Zbl 1070.65113
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.