×

Chaotic motions in the real fuzzy electronic circuits. (English) Zbl 1322.94122

Summary: Fuzzy electronic circuit (FEC) is firstly introduced, which is implementing Takagi-Sugeno (T-S) fuzzy chaotic systems on electronic circuit. In the research field of secure communications, the original source should be blended with other complex signals. Chaotic signals are one of the good sources to be applied to encrypt high confidential signals, because of its high complexity, sensitiveness of initial conditions, and unpredictability. Consequently, generating chaotic signals on electronic circuit to produce real electrical signals applied to secure communications is an exceedingly important issue. However, nonlinear systems are always composed of many complex equations and are hard to realize on electronic circuits. Takagi-Sugeno (T-S) fuzzy model is a powerful tool, which is described by fuzzy IF-THEN rules to express the local dynamics of each fuzzy rule by a linear system model. Accordingly, in this paper, we produce the chaotic signals via electronic circuits through T-S fuzzy model and the numerical simulation results provided by MATLAB are also proposed for comparison. T-S fuzzy chaotic Lorenz and Chen-Lee systems are used for examples and are given to demonstrate the effectiveness of the proposed electronic circuit.

MSC:

94C05 Analytic circuit theory
94D05 Fuzzy sets and logic (in connection with information, communication, or circuits theory)
34C28 Complex behavior and chaotic systems of ordinary differential equations

Software:

Matlab

References:

[1] Li, S. Y.; Yang, C. H.; Chen, S. A.; Ko, L. W.; Lin, C. T., Fuzzy adaptive synchronization of time-reversed chaotic systems via a new adaptive control strategy, Information Sciences, 222, 10, 486-500 (2013) · Zbl 1293.93455 · doi:10.1016/j.ins.2012.08.007
[2] Mamandi, A.; Kargarnovin, M. H.; Farsi, S., Dynamic analysis of a simply supported beam resting on a nonlinear elastic foundation under compressive axial load using nonlinear normal modes techniques under three-to-one internal resonance condition, Nonlinear Dynamics, 70, 2, 1147-1172 (2012) · doi:10.1007/s11071-012-0520-1
[3] Li, S. Y.; Ge, Z. M., Generating tri-chaos attractors with three positive lyapunov exponents in new four order system via linear coupling, Nonlinear Dynamics, 69, 3, 805-816 (2012) · doi:10.1007/s11071-011-0306-x
[4] Yang, C.-H.; Chen, T.-W.; Li, S.-Y.; Chang, C.-M.; Ge, Z.-M., Chaos generalized synchronization of an inertial tachometer with new Mathieu-Van der Pol systems as functional system by GYC partial region stability theory, Communications in Nonlinear Science and Numerical Simulation, 17, 3, 1355-1371 (2012) · Zbl 1250.34044 · doi:10.1016/j.cnsns.2011.07.008
[5] Chowdhury, M. S. H.; Hashim, I.; Momani, S.; Rahman, M. M., Application of multistage homotopy perturbation method to the chaotic Genesio system, Abstract and Applied Analysis, 2012 (2012) · Zbl 1246.65241 · doi:10.1155/2012/974293
[6] Horikawa, Y.; Kitajima, H., Quasiperiodic and exponential transient phase waves and their bifurcations in a ring of unidirectionally coupled parametric oscillators, Nonlinear Dynamics, 70, 2, 1079-1094 (2012) · doi:10.1007/s11071-012-0514-z
[7] Freihat, A.; Momani, S., Adaptation of differential transform method for the numeric-analytic solution of fractional-order Rössler chaotic and hyperchaotic systems, Abstract and Applied Analysis, 2012 (2012) · Zbl 1237.37058 · doi:10.1155/2012/934219
[8] Ge, Z.-M.; Li, S.-Y., Chaos generalized synchronization of new Mathieu-Van der Pol systems with new Duffing-Van der Pol systems as functional system by GYC partial region stability theory, Applied Mathematical Modelling, 35, 11, 5245-5264 (2011) · Zbl 1228.93097 · doi:10.1016/j.apm.2011.03.022
[9] Ge, Z.-M.; Li, S.-Y., Chaos control of new Mathieu-Van der Pol systems with new Mathieu-Duffing systems as functional system by GYC partial region stability theory, Nonlinear Analysis: Theory, Methods & Applications, 71, 9, 4047-4059 (2009) · Zbl 1176.34072 · doi:10.1016/j.na.2009.02.095
[10] Yin, C.; Zhong, S.-M.; Chen, W.-F., Design of sliding mode controller for a class of fractional-order chaotic systems, Communications in Nonlinear Science and Numerical Simulation, 17, 1, 356-366 (2012) · Zbl 1248.93041 · doi:10.1016/j.cnsns.2011.04.024
[11] Zhao, J., Adaptive Q-S synchronization between coupled chaotic systems with stochastic perturbation and delay, Applied Mathematical Modelling, 36, 7, 3312-3319 (2012) · Zbl 1252.93072 · doi:10.1016/j.apm.2011.10.029
[12] Villegas, M.; Augustin, F.; Gilg, A.; Hmaidi, A.; Wever, U., Application of the polynomial chaos expansion to the simulation of chemical reactors with uncertainties, Mathematics and Computers in Simulation, 82, 5, 805-817 (2012) · Zbl 1242.65015 · doi:10.1016/j.matcom.2011.12.001
[13] Pérez-Polo, M. F.; Pérez-Molina, M., Saddle-focus bifurcation and chaotic behavior of a continuous stirred tank reactor using PI control, Chemical Engineering Science, 74, 28, 79-92 (2012) · doi:10.1016/j.ces.2012.02.031
[14] Jiao, J.; Chen, L., The genic mutation on dynamics of a predator-prey system with impulsive effect, Nonlinear Dynamics, 70, 1, 141-153 (2012) · Zbl 1267.34098 · doi:10.1007/s11071-012-0437-8
[15] Wang, T.; Jia, N.; Wang, K., A novel GCM chaotic neural network for information processing, Communications in Nonlinear Science and Numerical Simulation, 17, 2, 4846-4855 (2012) · Zbl 1302.92017 · doi:10.1016/j.cnsns.2012.05.011
[16] Quyen, N. X.; Yem, V. V.; Hoang, T. M., A chaotic pulse-time modulation method for digital communication, Abstract and Applied Analysis, 2012 (2012) · Zbl 1242.94003 · doi:10.1155/2012/835304
[17] Wang, T.; Jia, N.; Wang, K., A novel GCM chaotic neural network for information processing, Communications in Nonlinear Science and Numerical Simulation, 17, 12, 4846-4855 (2012) · Zbl 1302.92017 · doi:10.1016/j.cnsns.2012.05.011
[18] Wang, S.; Yao, H., The effect of control strength on lag synchronization of nonlinear coupled complex networks, Abstract and Applied Analysis, 2012 (2012) · Zbl 1246.93082 · doi:10.1155/2012/810364
[19] Mata-Machuca, J. L.; Martínez-Guerra, R.; Aguilar-López, R.; Aguilar-Ibañez, C., A chaotic system in synchronization and secure communications, Communications in Nonlinear Science and Numerical Simulation, 17, 4, 1706-1713 (2012) · doi:10.1016/j.cnsns.2011.08.026
[20] Hou, Y.-Y.; Chen, H.-C.; Chang, J.-F.; Yan, J.-J.; Liao, T.-L., Design and implementation of the Sprott chaotic secure digital communication systems, Applied Mathematics and Computation, 218, 24, 11799-11805 (2012) · doi:10.1016/j.amc.2012.04.076
[21] Lorenz, E. N., Deterministic non-periodic flows, Journal of the Atmospheric Science, 20, 2, 130-141 (1963) · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[22] Li, S.; Li, Y.; Liu, B.; Murray, T., Model-free control of Lorenz chaos using an approximate optimal control strategy, Communications in Nonlinear Science and Numerical Simulation, 17, 12, 4891-4900 (2012) · Zbl 1352.34090 · doi:10.1016/j.cnsns.2012.05.024
[23] El-Sayed, A. M. A.; Ahmed, E.; El-Saka, H. A. A., Dynamic properties of the fractional-order logistic equation of complex variables, Abstract and Applied Analysis, 2012 (2012) · Zbl 1246.37074 · doi:10.1155/2012/251715
[24] Chen, H.-K., Synchronization of two different chaotic systems: a new system and each of the dynamical systems Lorenz, Chen and Lü, Chaos, Solitons & Fractals, 25, 5, 1049-1056 (2005) · Zbl 1198.34069 · doi:10.1016/j.chaos.2004.11.032
[25] Bi, Q.; Zhang, Z., Bursting phenomena as well as the bifurcation mechanism in controlled Lorenz oscillator with two time scales, Physics Letters A, 375, 8, 1183-1190 (2011) · Zbl 1242.34058 · doi:10.1016/j.physleta.2011.01.037
[26] Oumlzkaynak, F.; Oumlzer, A. B., A method for designing strong S-Boxes based on chaotic Lorenz system, Physics Letters A, 374, 36, 3733-3738 (2010) · Zbl 1238.34085 · doi:10.1016/j.physleta.2010.07.019
[27] Li, S. Y.; Ge, Z. M., Generalized synchronization of chaotic systems with different orders by fuzzy logic constant controller, Expert Systems With Applications, 37, 3, 1357-1370 (2011)
[28] Chen, H.-K.; Lee, C.-I., Anti-control of chaos in rigid body motion, Chaos, Solitons and Fractals, 21, 4, 957-965 (2004) · Zbl 1046.70005 · doi:10.1016/j.chaos.2003.12.034
[29] Tam, L. M.; SiTou, W. M., Parametric study of the fractional order Chen-Lee System, Chaos, Solitons & Fractals, 37, 3, 817-826 (2008) · doi:10.1016/j.chaos.2006.09.067
[30] Tam, L. M.; Chen, J. H.; Chen, H. K., Generation of hyperchaos from the Chen-Lee system via sinusoidal perturbation, Chaos, Solitons & Fractals, 38, 3, 826-839 (2008) · doi:10.1016/j.chaos.2007.01.039
[31] Chen, J. H., Controlling chaos and chaotification in the Chen-Lee system by multiple time delays, Chaos, Solitons & Fractals, 36, 4, 843-852 (2008) · doi:10.1016/j.chaos.2006.10.049
[32] Zadeh, L. A., Fuzzy sets, Information and Computation, 8, 3, 338-353 (1965) · Zbl 0139.24606
[33] Zadeh, L. A., Fuzzy logic, IEEE Computer, 21, 4, 83-93 (1988) · doi:10.1109/2.53
[34] Takagi, T.; Sugeno, M., Fuzzy identification of systems and its applications to modeling and control, IEEE Transactions on Systems, Man and Cybernetics, 15, 1, 116-132 (1985) · Zbl 0576.93021 · doi:10.1109/TSMC.1985.6313399
[35] Zimic, N.; Mraz, M., Decomposition of a complex fuzzy controller for the truck-and-trailer reverse parking problem, Mathematical and Computer Modelling, 43, 5-6, 632-645 (2006) · Zbl 1136.93374 · doi:10.1016/j.mcm.2005.10.005
[36] Wang, Y.-W.; Guan, Z.-H.; Wang, H. O., LMI-based fuzzy stability and synchronization of Chen’s system, Physics Letters A, 320, 2-3, 154-159 (2003) · Zbl 1065.37503 · doi:10.1016/j.physleta.2003.10.074
[37] Li, S. Y., Chaos control of new Mathieu-van der Pol systems by fuzzy logic constant controllers, Applied Soft Computing, 11, 8, 4474-4487 (2011) · doi:10.1016/j.asoc.2011.08.024
[38] Ge, Z. M.; Li, S. Y., Fuzzy modeling and synchronization of chaotic Quantum cellular neural networks nano system via a novel fuzzy model and its implementation on electronic circuits, Journal of Computational and Theoretical Nanoscience, 7, 11, 2453-2462 (2010) · doi:10.1166/jctn.2010.1633
[39] Lin, C.-J.; Xu, Y.-J., A hybrid evolutionary learning algorithm for TSK-type fuzzy model design, Mathematical and Computer Modelling, 43, 5-6, 563-581 (2006) · Zbl 1145.93371 · doi:10.1016/j.mcm.2005.08.008
[40] Jin, S. S.; Lee, Y.-H., Fuzzy stability of a functional equation deriving from quadratic and additive mappings, Abstract and Applied Analysis, 2011 (2011) · Zbl 1221.39037 · doi:10.1155/2011/534120
[41] Li, S. Y.; Ge, Z. M., Fuzzy modeling and synchronization of two totally different chaotic systems via novel fuzzy model, IEEE Transactions on Systems, Man, and Cybernetics B, 41, 4, 1015-1026 (2011) · doi:10.1109/TSMCB.2010.2103056
[42] Şengönül, M.; Zararsız, Z., Some additions to the fuzzy convergent and fuzzy bounded sequence spaces of fuzzy numbers, Abstract and Applied Analysis, 2011 (2011) · Zbl 1243.46065 · doi:10.1155/2011/837584
[43] Tran, N. H.; Ravoof, A.; Nguyen, T.; Tran, K., Modelling of type I fracture network: objective function formulation by fuzzy sensitivity analysis, Mathematical and Computer Modelling, 49, 7-8, 1283-1287 (2009) · Zbl 1165.74347 · doi:10.1016/j.mcm.2008.11.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.