×

Chance-constrained sneaking trajectory planning for reconnaissance robots. (English) Zbl 1505.93167


MSC:

93C85 Automated systems (robots, etc.) in control theory
49J55 Existence of optimal solutions to problems involving randomness

Software:

ICLOCS
Full Text: DOI

References:

[1] Chen, J. Y.C.; Haas, E. C.; Barnes, M. J., Human performance issues and user interface design for teleoperated robots, IEEE Trans. Syst. Man Cybern.: Part C (Appl. Rev.), 37, 6, 1231-1245 (2007)
[2] Patle, B. K.; Ganesh, B. L.; Pandey, A.; Parhi, D. R.K.; Jagadeesh, A., A review: on path planning strategies for navigation of mobile robot, Defence Technol., 15, 4, 582-606 (2019)
[3] Sariff, N.; Buniyamin, N., An overview of autonomous mobile robot path planning algorithms, (Conference on Research & Development IEEE (2006)), 183-188
[4] Guruprasad, K. R.; Ranjitha, T. D., CPC Algorithm: exact area coverage by a mobile robot using approximate cellular decomposition, Robotica, 39, 7, 1141-1162 (2021)
[5] Salama, O. A.A.; Eltaib, M. E.H.; Mohamed, H. A.; Salah, O., RCD: radial cell decomposition algorithm for mobile robot path planning, IEEE Access, 9, 149982-149992 (2021)
[6] Lin, Z.; Yue, M.; Wu, X.; Tian, H., An improved artificial potential field method for path planning of mobile robot with subgoal adaptive selection, Int. Conf. Intell. Robot. Appl., 211-220 (2019)
[7] Szczepanski, R.; Bereit, A.; Tarczewski, T., Efficient local path planning algorithm using artificial potential field supported by augmented reality, Energies, 14, 20, 6642 (2021)
[8] Yao, Q.; Zheng, Z.; Qi, L.; Yuan, H.; Guo, X.; Zhao, M.; Liu, Z.; Yang, T., Path planning method with improved artificial potential field—a reinforcement learning perspective, IEEE Access, 8, 135513-135523 (2020)
[9] Keshari, A.; Mohanta, J. C., A knowledge based fuzzy-probabilistic roadmap method for mobile robot navigation, Appl. Soft. Comput., 79, 391-409 (2019)
[10] Kala, R., Routing-based navigation of dense mobile robots, Intell. Serv. Robot., 11, 25-39 (2018)
[11] Ravankar, A. A.; Ravankar, A.; Emaru, T.; Kobayashi, Y., HPPRM: hybrid potential based probabilistic roadmap algorithm for improved dynamic path planning of mobile robots, IEEE Access, 8, 221743-221766 (2020)
[12] Wu, Y.; Qu, X., Path planning for taxi of carrier aircraft launching, Sci. China: Technol. Sci., 56, 6, 1561-1570 (2013)
[13] Tang, G.; Tang, C.; Claramunt, C.; Hu, X.; Zhou, P., Geometric A-Star algorithm: an Improved a-star algorithm for AGV path planning in a port environment, IEEE Access, 9, 59196-59210 (2021)
[14] Bulut, V., Path planning for autonomous ground vehicles based on quintic trigonometric Bézier curve, J. Brazil. Soc. Mech. Sci. Eng., 43, 104 (2021)
[15] Gómez-Bravo, F.; Cuesta, F.; Ollero, A.; Viguria, A., Continuous curvature path generation based on β-spline curves for parking manoeuvres, Robot. Autonomous Syst., 56, 4, 360-372 (2008)
[16] Simba, K. R.; Uchiyama, N.; Sano, S., Real-time trajectory generation for mobile robots in a corridor-like space using Beziers curves, (2013 IEEE/SICE International Symposium on System Integration (2013), IEEE), 37-41
[17] Szczepanski, R.; Tarczewski, T., Global path planning for mobile robot based on Artificial Bee Colony and Dijkstra’s algorithms, (2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC) (2021), IEEE), 724-730
[18] Contreras-Cruz, M. A.; Ayala-Ramirez, V.; Hernandez-Belmonte, U. H., Mobile robot path planning using artificial bee colony and evolutionary programming, Appl. Soft Comput. J., 30, 319-328 (2015)
[19] Reister, D. F.; Pin, F. G., Time-optimal trajectories for mobile robots with two independently driven wheels, Int. J. Rob. Res., 13, 1, 38-54 (1994)
[20] Balkcom, D. J.; Mason, M. T., Time optimal trajectories for bounded velocity differential drive vehicles, Int. J. Rob. Res., 21, 3, 199-217 (2002)
[21] Li, B.; Acarman, T.; Zhang, Y.; Zhang, L.; Yaman, C.; Kong, Q., Tractor-trailer vehicle trajectory planning in narrow environments with a progressively constrained optimal control approach, IEEE Trans. Intell. Vehicl., 5, 3, 414-425 (2019)
[22] Li, B.; Yin, Z.; Ouyang, Y.; Zhang, Y.; Zhong, X.; Tang, S., Online trajectory Replanning for sudden environmental changes during automated parking: a parallel stitching method, IEEE Trans. Intell. Veh. (2022), DOI
[23] Szczepanski R., Tarczewski T., Erwinski K. Comparison of constraint-handling techniques used in artificial bee colony algorithm for auto-tuning of state feedback speed controller for PMSM, 2018: 279-286.
[24] Wang, X.; Peng, H.; Liu, J.; Dong, X.; Zhao, X.; Lu, C., Optimal control based coordinated taxiing path planning and tracking for multiple carrier aircraft on flight deck, Defence Technol. (2020)
[25] Liu, J.; Han, W.; Wang, X.; Li, J., Research on cooperative trajectory planning and tracking problem for multiple carrier aircraft on the deck, IEEE Syst. J., 14, 2, 3027-3038 (2020)
[26] Peng, H.; Song, N.; Li, F.; Tang, S., A mechanistic-based data-driven approach for general friction modeling in complex mechanical system, ASME J. Appl. Mech., 89, Article 071005 pp. (2022)
[27] Salomon, S.; Avigad, G.; Fleming, P. J., Active robust optimization: enhancing robustness to uncertain environments, IEEE Trans. Cybern., 44, 11, 2221-2231 (2014)
[28] Lorenzen, M.; Dabbene, F.; Tempo, R.; Allgöwer, F., Constraint-tightening and stability in stochastic model predictive control, IEEE Trans. Automat. Contr., 62, 99, 3165-3177 (2017) · Zbl 1370.93245
[29] Liu, Y.; Yu, C.; Sheng, J.; Zhang, T., Self-collision avoidance trajectory planning and robust control of a dual-arm space robot, Int. J. Control Automat. Syst.,, 16, 6, 2896-2905 (2018)
[30] Chohan, N.; Nazari, M. A.; Wymeersch, H.; Charalambous, T., Robust trajectory planning of autonomous vehicles at intersections with communication impairments, (57th Annual Allerton Conference on Communication, Control, and Computing (Allerton) (2019), IEEE), 832-839
[31] Kuwata, Y., Trajectory Planning for Unmanned Vehicles Using Robust Receding Horizon Control (2007), Massachusetts Institute of Technology
[32] da Silva Arantes, M.; Toledo, C. F.M.; Williams, B. C.; Ono, M.; Williams, B. C., Collision-free encoding for chance-constrained nonconvex path planning, IEEE Trans. Rob., 35, 2, 433-448 (2019)
[33] Dawson, C. B., Safe and Efficient Motion Planning Through Chance-Constrained Nonlinear Optimization (2021), Massachusetts Institute of Technology
[34] Vitus, M. P.; Zhou, Z.; Tomlin, C. J., Stochastic control with uncertain parameters via chance constrained control, IEEE Trans. Automat. Contr., 61, 10, 2892-2905 (2015) · Zbl 1359.93458
[35] Calafiore, G. C.; Campi, M. C., The scenario approach to robust control design, IEEE Trans. Automat. Contr., 51, 5, 742-753 (2006) · Zbl 1366.93457
[36] Geng, X.; Xie, L., Chance-constrained unit commitment via the scenario approach, (2019 North American Power Symposium (NAPS) (2019), IEEE), 1-6
[37] Nemirovski, A.; Shapiro, A., Convex approximations of chance constrained programs, SIAM J. Optim., 17, 4, 969-996 (2007) · Zbl 1126.90056
[38] Pinter, J., Deterministic approximations of probability inequalities, Zeitschrift für Oper.-Res., 33, 4, 219-239 (1989) · Zbl 0672.60032
[39] Zhao, Z.; Kumar, M., A Split-Bernstein Approach to Chance Constrained Programs, 6621-6626 (2014), 53rd IEEE Conference on Decision and Control. IEEE
[40] Chai, R.; Savvaris, A.; Tsourdos, A.; Chai, S.; Xia, Y.; Wang, S., Solving Trajectory optimization problems in the presence of probabilistic constraints, IEEE Trans. Cybern., 50, 10, 4332-4434 (2019)
[41] Chai, R.; Savvaris, A.; Tsourdos, A.; Chai, S.; Xia, Y., Stochastic Spacecraft Trajectory Optimization with the Consideration of Chance Constraints, IEEE Trans. Control Syst. Technol., 28, 4, 1550-1559 (2020)
[42] Chai, R.; Tsourdos, A.; Savvaris, A.; Wang, S.; Xia, Y.; Chai, S., Fast generation of chance-constrained flight trajectory for unmanned vehicles, IEEE Trans. Aerosp. Electron. Syst., 57, 2, 1028-1045 (2020)
[43] Shen, J.; Tang, T.; Wang, L., Spectral Methods: Algorithms, Analysis and Applications (2011), Springer: Springer Berlin · Zbl 1227.65117
[44] Nie, Y.; Faqir, O.; Kerrigan, E. C., ICLOCS2: try this optimal control problem solver before you try the rest, (UKACC 12th International Conference on Control (2018))
[45] Curtis, F. E.; Schenk, O.; Wächter, A., An interior-point algorithm for large-scale nonlinear optimization with inexact step computations, SIAM J. Sci. Comput., 32, 3447-3475 (2009) · Zbl 1220.49018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.