×

Condensation heat transfer enhancement in the presence of non-condensable gas using the interfacial effect of dropwise condensation. (English) Zbl 1140.80301

Summary: Heat transfer characteristics of dropwise condensation (DWC) were experimentally studied on a vertical plate for a variety of non-condensable gas (NCG) concentration, saturation pressure, and surface sub-cooling degree. As the heat transfer performance was dominated by the vapor diffusion process near the interface of the gas-liquid within the gas phase, the additional thermal resistance of the coating layer may not be strictly limited, a fluorocarbon coating was applied to promote dropwise condensation mode. Compared with the traditional filmwise condensation (FWC), heat and mass transfer with NCG can be enhanced with the dropwise condensation mode. In the present paper, the effect of condensate liquid resistance should not be regarded as the most vital factor to explain the results, but the vapor diffusion process. This is attributed to the liquid-vapor interfacial perturbation motion caused by coalescence and departure of condensate droplets. The results also demonstrated that the feature of droplets departure is the dominant factor for the steam-air condensation heat transfer enhancement.

MSC:

80-05 Experimental work for problems pertaining to classical thermodynamics
80A20 Heat and mass transfer, heat flow (MSC2010)
80A22 Stefan problems, phase changes, etc.
Full Text: DOI

References:

[1] Colburn, A. P.; Hougen, O. A.: Design of cooler condensers for mixtures of vapors with noncondensing gases, Ind. eng. Chem. 26, 1178-1182 (1934)
[2] Tanner, D. W.; Pope, D.; Potter, C. J.; West, D.: Heat transfer in DWC at low steam pressure in the absence and presence of non-condensable gas, Int. J. Heat mass transf. 11, No. 2, 181-190 (1968)
[3] Tanner, D. W.; Pope, D.; Potter, C. J.; West, D.: Heat transfer in DWC part I. The effect of heat flux steam velocity and non-condensable gas concentration, Int. J. Heat mass transf. 8, 419-426 (1965)
[4] Wang, C. Y.; Tu, C. J.: Effects of non-condensable gas on laminar film condensation in a vertical tube, Int. J. Heat mass transf. 31, No. 11, 2339-2345 (1988)
[5] Minkowycz, W. J.; Sparrow, E. M.: Condensation heat transfer in the presence of non-condensables, interfacial resistance, super heating variable properties and diffusion, Int. J. Heat mass transf. 9, 1125-1144 (1966)
[6] Srzic, V.; Soliman, H. M.; Ormiston, S. J.: Analysis of laminar mixed convection condensation on isothermal plates using the full boundary layer equations mixtures of a vapor and a lighter gas, Int. J. Heat mass transf. 42, 685-695 (1999) · Zbl 1054.76561 · doi:10.1016/S0017-9310(98)00198-7
[7] Rose, J. W.: Approximate equation for forced convection in the presence of non-condensable gas on flat plate and horizontal tube, Int. J. Heat mass transf. 23, 539-546 (1980)
[8] Corradini, M. L.: Turbulent condensation on a cold wall in the presence of a noncondensable gas, Nucl. technol. 64, No. 2, 186-195 (1984)
[9] Maheshwari, N. K.; Saha, D.; Sinha, R. K.; Ritomi, M.: Investigation on condensation in presence of a noncondensable gas for a wide range of Reynolds number, Nucl. eng. Des. 227, No. 2, 219-238 (2004)
[10] Semiat, R.; Galperin, Y.: Effect of non-condensable gases on heat transfer in the tower MED seawater desalination plant, Desalination 140, 27-46 (2001)
[11] Kim, M. H.; Kang, H. C.: Condensation phenomena with wavy interface in the presence of a noncondensable gas, Condensat. condens. Des. ASME, 219-230 (1993)
[12] Karapantsios, T. D.; Kostoglou, M.; Karabelas, A. J.: Local condensation rates of steam – air mixtures in direct contact with a falling liquid film, Int. J. Heat mass transf. 38, No. 5, 779-794 (1995)
[13] Park, S. K.; Kim, M. H.; Yoo, K. J.: Condensation of pure steam and steam – air mixture with surface waves of condensate film on a vertical wall, Int. J. Multiphase flow 22, 893-908 (1996) · Zbl 1135.76516 · doi:10.1016/0301-9322(96)00020-1
[14] Park, S. K.; Kim, M. H.; Yoo, K. J.: Effects of a wavy interface on steam – air condensation on a vertical surface, Int. J. Multiphase flow 23, No. 6, 1031-1042 (1997) · Zbl 1135.76517 · doi:10.1016/S0301-9322(97)00022-0
[15] Citakoglu, E.; Rose, J. W.: Dropwise condensation-some factors influencing the validity of heat-transfer measurements, Int. J. Heat mass transf. 11, No. 3, 523-537 (1968)
[16] Sundararaman, T. G.; Venkatram, T.: Heat transfer during DWC of steam in the presence of non-condensable gases effects of geometrical shape of the surface reversal of cooling of water flow and orientation, Ind. J. Technol. 14, No. 7, 313-321 (1976)
[17] Reisbig, R. L.: Diffusion-controlled condensation two a two-species mixture, High temp. High press. 24, No. 2, 231-240 (1992)
[18] Abdulhadi, M.: Estimation of air traces in steam – air mixtures subjected to dropwise condensation, Int. commun. Heat mass transf. 14, No. 3, 347-351 (1987)
[19] R. Shade, B. Mikic, The Effect of non-condensible Gases on heat transfer during DWC, in: AIChE 67th Annual Meet, 1974, p. 676 – 681.
[20] Ganzevles, F. L. A.; Van Der Geld, C. W. M.: Temperatures and the condensate heat resistance in DWC of multicomponent mixtures with inert gases, Int. J. Heat mass transf. 45, No. 15, 3233-3243 (2002)
[21] J.D. Jackson, P. An, M. Ahmadinejad, Heat transfer from a steam/air mixture to a water cooled condensing plate, in: Proceedings of the 12th International Heat Transfer Conference, vol. 3, 2002, p. 911 – 916.
[22] Schmidt, E.; Schurig, W.; Sellschopp, W.: Versuche über die kondensation in film-und tropfenform, Tech. mech. Thermodynamik. 1, 53-63 (1930)
[23] Rose, J. W.: DWC theory and experiment: a review, Proc. inst. Eng. part A: J. Power energ. 216, 115-128 (2001)
[24] Ma, X. H.; Rose, J. W.; Xu, D. Q.; Lin, J. F.; Wang, B. X.: Advances in DWC heat transfer: chinese research, Chem. eng. J. 78, 87-93 (2000)
[25] Ma, X. H.; Chen, J. B.; Xu, D. Q.; Lin, J. F.; Ren, C. S.; Long, Z. H.: Influence of processing conditions of polymer film on DWC heat transfer, Int. J. Heat mass transf. 45, No. 16, 3405-3411 (2002)
[26] Marto, P. J.; Looney, D. J.; Rose, J. W.; Wanniarachchi, A. S.: Evaluation of organic coatings for the promotion of DWC of steam, Int. J. Heat mass transf. 29, No. 8, 1109-1117 (1986)
[27] Haraguchi, T.; Shimada, R.; Kumagai, S.; Takeyama, T.: The effect of polyvinylidene chloride coating thickness on promotion of dropwise steam condensation, Int. J. Heat. mass transf. 34, No. 12, 3047-3054 (1991)
[28] Tanasawa, I.: Advances in condensation heat transfer, Adv. heat transf. 21, 39-55 (1991)
[29] Zhao, Q.; Zhang, D. C.; Lin, J. F.: Surface materials with dropwise condensation made by ion implantation technology, Int. J. Heat mass transf. 34, No. 11, 2833-2835 (1991)
[30] Koch, G.; Kraft, K.; Leipertz, A.: Study on plasma enhanced CVD coated material to promote dropwise condensation of steam, Int. J. Heat mass transf. 41, No. 13, 1899-1906 (1998)
[31] X.H. Ma, B.X. Wang, D.Q. Xu, J.F. Lin, Dropwise condensation heat transfer of steam on polymer coatings, in: International Symposium on Heat Transfer, vol. 7 – 11, October, 1996, p. 435 – 438.
[32] Seifert, S.; Litovsky, E.; Kleiman, J. I.; Heimann, R. B.: Thermal resistance and apparent thermal conductivity of thin plasma-sprayed mullite coatings, Surf. coat. Technol. 200, 3404-3410 (2006)
[33] O’neill, G. A.; Westwater, J. W.: Dropwise condensation of steam on electroplated silver surfaces, Int. J. Heat mass transf. 27, No. 9, 1539-1549 (1984)
[34] Kline, S. J.; Mcclintock, F. A.: Describing uncertainties in single-sample experiments, Mech. eng. 75, 3-8 (1953)
[35] Wilcox, S. J.; Rohsenow, W. M.: Film condensation of potassium using copper condensing block for precise wall-temperature measurement, J. heat transf., 359-371 (1970)
[36] Min, J. C.; Peng, X. F.; Wang, X. D.: Departure diameter of a drop on a vertical plate, J. basic sci. Eng. 10, No. 1, 51-62 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.