×

Boundary regularity of stationary critical points for a Cosserat energy functional. (English) Zbl 1512.35141

Summary: In this paper, we will discuss the boundary regularity of stationary critical points for the following Cosserat energy functional: \[ \mathrm{Coss}(\phi, R) = \int_\Omega(|R^t\nabla\phi - I_3|^2 + |\nabla R|^p + \langle\phi - x, f\rangle + \langle R, M\rangle)\,dx, \tag{1} \] where \(2\leq p < 3\), \(f\in L^\infty(\Omega, \mathbb{R}^3)\), \(M\in L^\infty(\Omega, SO(3))\), and \(\Omega\subset\mathbb{R}^3\) is a domain with \(C^1\) boundary. Precisely, if \((\phi, R)\in H^1(\Omega, \mathbb{R}^3)\times W^{1, p}(\Omega, SO(3))\) is a stationary critical point of (1) satisfying a certain boundary monotonicity inequality, we show that there exists a closed subset \(\Sigma\subset\partial\Omega\) satisfying the Hausdorff measure \(H^{3 - p}(\Sigma) = 0\) such that \((\phi, R)\in C^{1, \alpha}(\Omega_\delta\setminus\Sigma)\times C^\alpha(\Omega_\delta\setminus\Sigma)\), where \(\Omega_\delta := \{x\in\bar{\Omega}, \mathrm{dist}(x, \partial\Omega) \leq \delta\}\), \(\delta > 0\).

MSC:

35B65 Smoothness and regularity of solutions to PDEs
35D30 Weak solutions to PDEs
35J20 Variational methods for second-order elliptic equations
Full Text: DOI

References:

[1] Bethuel, F., On the singular set of stationary harmonic maps, Manu. Math., 78, 417-443 (1993) · Zbl 0792.53039 · doi:10.1007/BF02599324
[2] Boccardo, L.; Murat, F., Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal., 19, 581-597 (1992) · Zbl 0783.35020 · doi:10.1016/0362-546X(92)90023-8
[3] Chang, SC; Chen, JT; Wei, SW, Liouville properties for \(p\)-harmonic maps with finite \(q\)-energy, Trans. AMS, 368, 787-825 (2016) · Zbl 1339.53034 · doi:10.1090/tran/6351
[4] Cheeger, J.; Naber, A., Quantitative stratification and the regularity of harmonic maps and minimal currents, Commun. Pure Appl. Math., 66, 965-990 (2013) · Zbl 1269.53063 · doi:10.1002/cpa.21446
[5] Cosserat, E., Cosserat, F.: Théorie des corps déformables. Librairie Scientifique (Paris: Hermann, 1909) · JFM 40.0862.02
[6] Evans, LC, Partial regularity for stationary harmonic maps into spheres, Arch. Ration. Mech. Anal., 116, 101-113 (1991) · Zbl 0754.58007 · doi:10.1007/BF00375587
[7] Evans, L.C., Gariepy, R.: Measure Theory and Fine Properties of Functions, Revised Textbooks in Mathematics. CRC Press, Boca Raton, FL (2015) · Zbl 1310.28001
[8] Fuchs, M.: \(p\)-harmonic obstacle problems. I. Partial regularity theory. Ann. Mat. Pura Appl. 156, 127-158 (1990) · Zbl 0715.49003
[9] Gastel, A., Regularity issues for Cosserat continua and p-harmonic maps, SIAM J. Math. Anal., 51, 4287-4310 (2019) · Zbl 1430.58009 · doi:10.1137/18M1201858
[10] Giaquinta, M., Giusti, E.: The singular set of the minima of certain quadratic functionals. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 11, 45-55 (1984) · Zbl 0543.49018
[11] Hardt, R.; Lin, FH, Mappings minimizing the \(L^p\) norm of the gradient, Commun. Pure Appl. Math., 40, 555-588 (1987) · Zbl 0646.49007 · doi:10.1002/cpa.3160400503
[12] Hardt, R.; Lin, FH; Wang, CY, Singularities of p-energy minimizing maps, Commun. Pure Appl. Math., 50, 399-447 (1997) · Zbl 0880.58006 · doi:10.1002/(SICI)1097-0312(199705)50:5<399::AID-CPA1>3.0.CO;2-4
[13] Hélein, F., Regularite des applications faiblement harmoniques entre une surface et variete riemannienne, CRAS Paris, 312, 591-596 (1991) · Zbl 0728.35015
[14] Hong, MC; Wang, CY, On the singular set of stable-stationary harmonic maps, Calc. Var. Partial Differ. Equ., 9, 141-156 (1999) · Zbl 0948.58010 · doi:10.1007/s005260050135
[15] Li, Y. M., Wang, C.Y.: Regularity of weak solution of variational problem modeling the cosserat micropolar elasticity. Int. Math. Res. Not. IMRN. doi:10.1093/imrn/rnaa202
[16] Lin, FH, Gradient estimates and blow-up analysis for stationary harmonic maps, Ann. Math., 149, 785-829 (1999) · Zbl 0949.58017 · doi:10.2307/121073
[17] Lin, F.H., Wang, C.Y.: Stable Stationary Harmonic Maps to Spheres. Acta Math. Sin. (Engl. Ser.) 22, 319-330 (2006) · Zbl 1121.58017
[18] Luckhaus, S., Partial Hölder continuity for minima of certain energies among maps into a Riemannian manifold, Indiana Univ. Math. J., 37, 349-367 (1988) · Zbl 0641.58012 · doi:10.1512/iumj.1988.37.37017
[19] Morrey, CB, Multiple Integrals in the Calculus of Variations (1986), Berlin: Springer, Berlin
[20] Naber, A.; Valtorta, D., Rectifiable-Reifenberg and the regularity of stationary and minimizing harmonic maps, Ann. Math., 2, 185, 131-227 (2017) · Zbl 1393.58009
[21] Naber, A.; Valtorta, D.; Veronelli, G., Quantitative regularity for p-harmonic maps, Commun. Anal. Geom., 27, 111-159 (2019) · Zbl 1414.53058 · doi:10.4310/CAG.2019.v27.n1.a4
[22] Neff, P., Existence of minimizers for a finite-strain micromorphic elastic solid, Proc. R. Soc. Edinb. Sect. A, 136, 997-1012 (2006) · Zbl 1106.74010 · doi:10.1017/S0308210500004844
[23] Schoen, R.; Uhlenbeck, K., A regularity theory for harmonic maps, J. Differ. Geom., 17, 307-335 (1982) · Zbl 0521.58021 · doi:10.4310/jdg/1214436923
[24] Schoen, R.; Uhlenbeck, K., Regularity of minimizing harmonic maps into the sphere, Invent. Math., 78, 89-100 (1984) · Zbl 0555.58011 · doi:10.1007/BF01388715
[25] Schoen, R.; Uhlenbeck, K., Boundary regularity and the Dirichlet problem for harmonic maps, J. Differ. Geom., 18, 253-268 (1983) · Zbl 0547.58020 · doi:10.4310/jdg/1214437663
[26] Toro, T.; Wang, CY, Compactness properties of weakly \(p\)-harmonic maps into homogeneous spaces, Indiana Univ. Math. J., 44, 87-113 (1995) · Zbl 0826.58014 · doi:10.1512/iumj.1995.44.1979
[27] Wang, CY, Boundary partial regularity for a class of harmonic maps, Commun. Partial Differ. Equ., 24, 355-368 (1999) · Zbl 0928.58023 · doi:10.1080/03605309908821425
[28] Xin, YL; Yang, YH, Regularity of \(p\)-harmonic maps into certain manifolds with positive sectional curvature, J. Reine Angew. Math., 466, 1-17 (1995) · Zbl 0827.58012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.