×

Riemann solvers of a conserved high-order traffic flow model with discontinuous fluxes. (English) Zbl 1510.65205

Summary: A conserved high-order traffic flow model (CHO model) is extended to the case with discontinuous fluxes which is called the CHO model with discontinuous fluxes. Based on the independence of its homogeneous subsystem and the property of Riemann invariants, Riemann solvers to the homogeneous CHO model with discontinuous fluxes are discussed. Moreover, we design the first-order Godunov scheme based on the Riemann solvers to solve the extended model, and prove the invariant region principle of numerical solutions. Two numerical examples are given to illustrate the effectiveness of the extended model and the designed scheme.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws

Software:

HE-E1GODF
Full Text: DOI

References:

[1] Lebacque, J. P., The Godunov scheme and what it means for first order traffic flow models, (Lesort, J. B., Proceedings of the Thirteenth International Symposium on Transportation and Traffic Theory (1996)), 647-677
[2] Bale, D. S.; Leveque, R. J.; Mitran, S.; Rossmanith, J. A., A wave propagation method for conservation laws and balance laws with spatially varying flux functions, SIAM J. Sci. Comput., 24, 3, 955-978 (2002) · Zbl 1034.65068
[3] Li, T., Well-posedness theory of an inhomogeneous traffic flow model, Discrete Contin. Dyn. B, 2, 3, 401-414 (2002) · Zbl 1162.35415
[4] Leveque, R. J., Finite Volume Methods for Hyperbolic Problems, 158-200 (2002), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1010.65040
[5] Leveque, R. J., Finite-volume methods for non-linear elasticity in heterogeneous media, Int. J. Numer. Meth. Fluids, 40, 1-2, 93-104 (2002) · Zbl 1024.74044
[6] Leveque, R. J., Solitary waves in layered nonlinear media, SIAM J. Appl. Math., 63, 5, 1539-1560 (2003) · Zbl 1075.74047
[7] Zhang, P.; Liu, R. X., Hyperbolic conservation laws with space-dependent flux: I. Characteristics theory and Riemann problem, J. Comput. Appl. Math., 156, 1, 1-21 (2003) · Zbl 1031.35104
[8] Zhang, P.; Liu, R. X.; Dai, S. Q., \( \delta \)-mapping algorithm and its application in traffic flow problems with inhomogeneities, J. Shanghai Univ. (Engl.), 7, 4, 315-317 (2003) · Zbl 1049.65089
[9] Zhang, P.; Liu, R. X., Hyperbolic conservation laws with space-dependent fluxes: II. General study of numerical fluxes, J. Comput. Appl. Math., 17, 1, 105-129 (2005) · Zbl 1068.65109
[10] Zhang, P.; Liu, R. X., Generalization of Runge-Kutta discontinuous Galerkin method to LWR traffic flow model with inhomogeneous road conditions, Numer. Methods Part. Differ. Equ., 21, 1, 80-88 (2005) · Zbl 1067.65105
[11] Zhang, P.; Liu, R. X.; Wong, S. C., High-resolution numerical approximation of traffic flow problems with variable lanes and free-flow velocities, Phys. Rev. E, 71, 5, 056704 (2005)
[12] Zhang, P.; Wong, S. C.; Shu, C. W., A weighted essentially non-oscillatory numerical scheme for a multi-class traffic flow model on an inhomogeneous highway, J. Comput. Phys., 212, 739-756 (2006) · Zbl 1149.65319
[13] Xu, Z. L.; Zhang, P.; Liu, R. X., \( \delta \)-mapping algorithm coupled with WENO reconstruction for nonlinear elasticity in heterogeneous media, Appl. Numer. Math., 57, 1, 103-116 (2007) · Zbl 1102.74047
[14] Bürger, R.; García, A.; Karlsen, K. H.; Towers, J. D., Difference schemes, entropy solutions, and speedup impulse for an inhomogeneous kinematic traffic flow model, Netw. Heterog. Media, 3, 1, 1-41 (2008) · Zbl 1173.35586
[15] Bürger, R.; García, A.; Karlsen, K. H.; Towers, J. D., A family of numerical schemes for kinematic flows with discontinuous flux, J. Eng. Math., 60, 3-4, 387-425 (2008) · Zbl 1200.76126
[16] Zhang, P.; Wong, S. C.; Xu, Z. L., A hybrid scheme for solving a multi-class traffic flow model with complex wave breaking, Comput. Methods Appl. Mech. Eng., 197, 45, 3816-3827 (2008) · Zbl 1425.35194
[17] Zhang, P.; Wu, D. Y.; Wong, S. C.; Tao, Y. Z., Kinetic description of bottleneck effects in traffic flow, Appl. Math. Mech., 30, 4, 425-434 (2009) · Zbl 1165.76340
[18] Jin, W. L.; Chen, L.; Puckett, E. G., Supply-demand diagrams and a new framework for analyzing the inhomogeneous Lighthill-Whitham-Richards model, (William, H. K.L.; Wong, S. C.; Hong, K. L., Proceedings of the 18th International Symposium on Transportation and Traffic Theory (2009), Springer), 603-635
[19] Bürger, R.; Karlsen, K. H.; Towers, J. D., On some difference schemes and entropy conditions for a class of multi-species kinematic flow models with discontinuous flux, Netw. Heterog. Media, 5, 3, 461-485 (2010) · Zbl 1263.76048
[20] Wang, G., An Engquist-Osher type finite difference scheme with a discontinuous flux function in space, J. Comput. Appl. Math., 235, 17, 4966-4977 (2011) · Zbl 1230.65098
[21] Chen, J. Z.; Shi, Z. K.; Hu, Y. M., Numerical solutions of a multiclass traffic flow model on an inhomogeneous highway using a high-resolution relaxed scheme, J. Zhejiang Univ. Sci. C (Comput. Electron.), 13, 1, 29-36 (2012)
[22] Wiens, J. K.; Stockie, J. M.; Williams, J. F., Riemann solver for a kinematic wave traffic model with discontinuous flux, J. Comput. Phys., 242, 1, 1-23 (2013) · Zbl 1302.65206
[23] Gassner, G. J.; Winters, A. R.; Kopriva, D. A., A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations, Appl. Math. Comput., 272, 2, 291-308 (2016) · Zbl 1410.65393
[24] Qiao, D. L.; Zhang, P.; Lin, Z. Y.; Wong, S. C.; Choi, K., A Runge-Kutta discontinuous Galerkin scheme for hyperbolic conservation laws with discontinuous fluxes, Appl. Math. Comput., 292, 1, 309-319 (2017) · Zbl 1410.65324
[25] Wang, G.; Hu, Y., The roe-type interface flux for conservation laws with discontinuous flux function, Appl. Math. Lett., 75, 68-73 (2018) · Zbl 1377.65112
[26] Chabot, S.; Glinsky, N.; Mercerat, E. D.; Hidalgob, L. F.B., A high-order discontinuous Galerkin method for 1D wave propagation in a nonlinear heterogeneous medium, J. Comput. Phys., 355, 191-213 (2018) · Zbl 1380.74109
[27] Wang, X.; Li, G.; Qian, S.; Li, J.; Wang, Z., High order well-balanced finite difference WENO schemes for shallow water flows along channels with irregular geometry, Appl. Math. Comput., 363, 124587 (2019) · Zbl 1433.76120
[28] Sun, X.; Wang, G.; Ma, Y., A new modified local Lax-Friedrichs scheme for scalar conservation laws with discontinuous flux, Appl. Math. Lett., 105, 106328 (2020) · Zbl 1436.65111
[29] Zhang, H. M., A theory of nonequilibrium traffic flow, Transp. Res. B, 32, 7, 485-498 (1998)
[30] Daganzo, C. F., Requiem for second-order fluid approximations of traffic flow, Transp. Res. B, 29, 4, 277-286 (1995)
[31] Zhang, P.; Wong, S. C.; Dai, S. Q., A conserved higher-order anisotropic traffic flow model: Description of equilibrium and non-equilibrium flows, Transp. Res. B, 43, 5, 562-574 (2009)
[32] Lighthill, M. J.; Whitham, G. B., On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. R. Soc. Lond. Ser. A, 317-345 (1955) · Zbl 0064.20906
[33] Richards, P. I., Shock waves on the highway, Oper. Res., 4, 42-51 (1956) · Zbl 1414.90094
[34] Pipes, L. A., An operational analysis of traffic dynamics, J. Appl. Phys., 24, 3, 274-281 (1953)
[35] Zhang, P.; Qiao, D. L.; Dong, L. Y.; Dai, S. Q.; Wong, S. C., A number of Riemann solvers for a conserved higher order traffic flow model, Fourth International Joint Conference on Computational Sciences and Optimization (CSO), 1049-1053 (2011)
[36] Lebacque, J. P.; Mammar, S.; Haj-Salem, H., The Aw-Rascle and Zhang’s model: Vacuum problems, existence and regularity of the solutions of the Riemann problem, Transp. Res. B, 41, 7, 710-721 (2007)
[37] Lebacque, J. P.; Mammar, S.; Haj-Salem, H., Generic second order traffic flow modelling, (Allsop, R. E.; Bell, M. G.H.; Heydecker, B. G., Proceedings of the 17th International Symposium on Transportation and Traffic Theory (2007), Elsevier), 755-776
[38] Tveito, A.; Winther, R., The solution of nonstrictly hyperbolic conservation laws may be hard to compute, SIAM J. Sci. Comput., 16, 2, 320-329 (1995) · Zbl 0824.65092
[39] Lin, L.; Temple, J. B.; Wang, J., Suppression of oscillations in Godunov’s method of a resonant non-strictly hyperbolic system, SIAM J. Numer. Anal., 32, 3, 841-864 (1995) · Zbl 0845.65052
[40] Diehl, S., A conservation law with point source and discontinuous flux function modeling continuous sedimentation, SIAM J. Appl. Math., 56, 2, 388-419 (1996) · Zbl 0849.35142
[41] Baiti, P.; Jenssen, H. K., Well-posedness for a class of \(2 \times 2\) conservation laws with \(L_\infty\) data, J. Differ. Equ., 140, 1, 161-185 (1997) · Zbl 0892.35097
[42] Klausen, R. A.; Risebro, N. H., Stability of conservation laws with discontinuous coefficients, J. Differ. Equ., 157, 1, 41-60 (1999) · Zbl 0935.35097
[43] Lax, P. D., Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, 11 (1973), SIAM: SIAM Philadelphia · Zbl 0268.35062
[44] Whitham, G. B., Linear and Nonlinear Waves (1974), Wiley: Wiley New York · Zbl 0373.76001
[45] Smoller, J., Shock Waves and Reaction-Diffusion Equations (1994), Springer-Verlag: Springer-Verlag New York · Zbl 0807.35002
[46] Qiao, D. L.; Zhang, P.; Wong, S. C.; Choi, K., Discontinuous Galerkin finite element scheme for a conserved higher-order traffic flow model by exploring Riemann solvers, Appl. Math. Comput., 244, 2, 567-576 (2014) · Zbl 1336.65168
[47] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (1999), Springer-Verlag: Springer-Verlag Berlin Heidelberg · Zbl 0923.76004
[48] Kerner, B. S.; Konhauser, P., Structure and parameters of clusters in traffic flow, Phys. Rev. E, 50, 54-83 (1994)
[49] Wu, C. X.; Zhang, P.; Wong, S. C.; Choi, K., Steady-state traffic flow on a ring road with up- and down-slopes, Phys. A, 403, 85-93 (2014) · Zbl 1395.90097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.