×

Fabric, force and strength anisotropies in granular materials: a micromechanical insight. (English) Zbl 1302.74044

Summary: In micromechanics, the stress-force-fabric (SFF) relationship is referred to as an analytical expression linking the stress state of a granular material with microparameters on contact forces and material fabric. This paper employs the SFF relationship and discrete element modelling to investigate the micromechanics of fabric, force and strength anisotropies in two-dimensional granular materials. The development of the SFF relationship is briefly summarized while more attention is placed on the strength anisotropy and deformation non-coaxiality. Due to the presence of initial anisotropy, a granular material demonstrates a different behaviour when the loading direction relative to the direction of the material fabric varies. Specimens may go through various paths to reach the same critical state at which the fabric and force anisotropies are coaxial with the loading direction. The critical state of anisotropic granular material has been found to be independent of the initial fabric. The fabric anisotropy and the force anisotropy approach their critical magnitudes at the critical state. The particle-scale data obtained from discrete element simulations of anisotropic materials show that in monotonic loading, the principal force direction quickly becomes coaxial with the loading direction (i.e. the strain increment direction as applied). However, material fabric directions differ from the loading direction and they only tend to be coaxial at a very large shear strain. The degree of force anisotropy is in general larger than that of fabric anisotropy. In comparison with the limited variation in the degree of force anisotropy with varying loading directions, the fabric anisotropy adapts in a much slower pace and demonstrates wider disparity in the evolution in the magnitude of fabric anisotropy. The difference in the fabric anisotropy evolution has a more significant contribution to strength anisotropy than that of force anisotropy. There are two key parameters that control the degree of deformation non-coaxiality in granular materials subjected to monotonic shearing: the ratio between the degrees of fabric anisotropy and that of force anisotropy and the angle between the principal fabric direction and the applied loading direction.

MSC:

74E20 Granularity
74M25 Micromechanics of solids

Software:

PFC2D

References:

[1] Ai, J., Langston, P.A., Yu, H.-S.: Discrete element modelling of material non-coaxiality in simple shear flows. Int. J. Numer. Anal. Methods Geomech. doi:10.1002/nag.2230
[2] Arthur J.R.F., Chua K.S., Dunstan T.: Induced anisotropy in a sand. Geotechnique 27(1), 13 (1977) · doi:10.1680/geot.1977.27.1.13
[3] Arthur J.R.F., Menzies B.K.: Inherent anisotropy in a sand. Geotechnique 22(1), 115-128 (1972) · doi:10.1680/geot.1972.22.1.115
[4] Bagi K.: Stress and strain in granular assemblies. Mech. Mater. 22(3), 165-177 (1996) · doi:10.1016/0167-6636(95)00044-5
[5] Cai Y., Yu H.S., Wanatowski D., Li X.: Non-coaxial behaviour of sand under various stress paths. J. Geotech. Geoenviron. Eng. ASCE 37(1), 75-96 (2013)
[6] Casagrande A., Carrillo N.: Shear failure of anisotropic materials. Proc. Boston Soc. Civil Eng. 31, 74-87 (1944)
[7] Christoffersen J., Mehrabadi M.M., Nemat-Nasser S.: A micromechanical description of granular material behaviour. J. Appl. Mech. ASME 48, 339-344 (1981) · Zbl 0471.73096 · doi:10.1115/1.3157619
[8] Cundall P.A., Strack O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47-65 (1979) · doi:10.1680/geot.1979.29.1.47
[9] Dafalias Y.F.: An anisotropic critical state soil plasticity model. Mech. Res. Commun. 13(6), 341-347 (1986) · Zbl 0613.73027 · doi:10.1016/0093-6413(86)90047-9
[10] Drescher A.: An experimental investigation of flow rules for granular materials using optically sensitive glass particles. Geotechnique 26(4), 591-601 (1976) · doi:10.1680/geot.1976.26.4.591
[11] Drescher A., De Josselinde Jong G.: Photoelastic verification of a mechanical model for the flow of a granular material. J. Mech. Phys. Solids 20, 337-351 (1972) · doi:10.1016/0022-5096(72)90029-4
[12] Goddard J.: An elastohydrodynamics theory for the rheology of concentrated suspensions of deformable particles. J. Non-Newton. Fluid Mech. 2, 169-189 (1977) · Zbl 0379.73007 · doi:10.1016/0377-0257(77)80042-6
[13] Gutierrez M., Ishihara K., Towhata I.: Flow theory for sand rotation of principal stress direction. Soils Found. 31, 121-132 (1991) · doi:10.3208/sandf1972.31.4_121
[14] Hall S.A., Bornert M., Desrues J., Pannier Y., Lenoir N., Viggiani G., Besuelle P.: Discrete and continuum analysis of localised deformation in sand using X-ray micro CT and volumetric digital image correlation. Geotechnique 60(5), 315-322 (2010) · doi:10.1680/geot.2010.60.5.315
[15] Itasca Consulting Group Inc.: PFC2D (Particle Flow Code in Two Dimensions), version 3.1ICG, Minneapolis (1999)
[16] Kanatani K.-I.: Distribution of directional data and fabric tensors. Int. J. Eng. Sci. 22(2), 149-164 (1984a) · Zbl 0586.73004 · doi:10.1016/0020-7225(84)90090-9
[17] Kanatani K.: Distribution of directional data and fabric tensors. Int. J. Eng. Sci. 22(2), 149-164 (1984b) · Zbl 0586.73004 · doi:10.1016/0020-7225(84)90090-9
[18] Konishi, Y., Oda, M., Nemat-Nasser, S.: Deformation and failure of granular materials. In: Proc., Proc. IUTAM Conf. Balkema, Rotterdam, pp. 403-412 (1982) · Zbl 0379.73007
[19] Lade P.V.: Failure criterion for cross-anisotropic soils. J. Geotech. Geoenviron. Eng. 134(1), 117-124 (2008) · doi:10.1061/(ASCE)1090-0241(2008)134:1(117)
[20] Lade P.V., Duncan J.M.: Elastoplastic stress-strain theory for cohesionless soil. J. Geotech. Eng. ASCE 101, 1037-1053 (1975)
[21] Lam W.-K., Tatsuoka F.: Effects of initial anisotropic fabric and σ2 on strength and deformation characteristics of sand. Soils Found. 28(1), 89-106 (1988) · doi:10.3208/sandf1972.28.89
[22] Li X., Yu H.-S.: Influence of loading direction on the behaviour of anisotropic granular materials. Int. J. Eng. Sci. 47, 1284-1296 (2009) · doi:10.1016/j.ijengsci.2009.03.001
[23] Li X., Yu H.-S.: Tensorial Characterisation of Directional Data in Micromechanics. Int. J. Solids Struct. 48(14-15), 2167-2176 (2011) · doi:10.1016/j.ijsolstr.2011.03.019
[24] Li X., Yu H.-S.: On the stress-force-fabric relationship for granular materials. Int. J. Solids Struct. 50(9), 1285-1302 (2013) · doi:10.1016/j.ijsolstr.2012.12.023
[25] Li, X., Yu, H.-S.: Particle scale insight into deformation non-coaxiality of granular materials. Int. J. Geomech. doi:10.1061/(ASCE)GM.1943-5622.0000338
[26] Li X., Yu H.-S., Li X.-S.: Macro-micro relations in granular mechanics. Int. J. Solids Struct. 46(25-26), 4331-4341 (2009) · Zbl 1176.74055 · doi:10.1016/j.ijsolstr.2009.08.018
[27] Li X.S., Dafalias Y.F.: A constitutive framework for anisotropic sand including non-proportional loading. Geotechnique 54(1), 41-55 (2004) · doi:10.1680/geot.2004.54.1.41
[28] Love A.E.H.: A Treatise of Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1927) · JFM 53.0752.01
[29] Miura K., Miura S., Toki S.: Deformation behavior of anisotropic dense sand under principal stress axes rotation. Soils Found. 26(1), 36-52 (1986) · doi:10.3208/sandf1972.26.36
[30] Nakata Y., Hyoda M., Murata H., Yasufuku N.: Flow deformation of sands subjected to principal stress rotation. Soils Found. 38(2), 115-128 (1998) · doi:10.3208/sandf.38.2_115
[31] Ng T.T.: Numerical simulations of granular soil using elliptical particles. Comput. Geotechn. 16, 153-169 (1994) · doi:10.1016/0266-352X(94)90019-1
[32] Oda M., Koishikawa I., Higuchi T.: Experimental study of anisotropic shear strength of sand by plane strain test. Soils Found. 18(1), 25-38 (1978) · doi:10.3208/sandf1972.18.25
[33] Oda, M., Nakayama, H.: Yield function for soil with anisotropic fabric. J. Eng. Mech. 115(1), 89-104 (1989)
[34] Oda M., Nemat-Nasser S., Konishi J.: Stress-induced anisotropy in granular masses. Soils Found. 25(3), 85-97 (1985) · doi:10.3208/sandf1972.25.3_85
[35] Ouadfel H., Rothenburg L.: Stress-force-fabric’ relationship for assemblies of ellipsoids. Mech. Mater. 33, 201-221 (2001) · doi:10.1016/S0167-6636(00)00057-0
[36] Roscoe, K.H., Basssett, R.H., Cole, E.R.: Principal axes observed during simple shear of a sand. In: Proceedings of the Geotechnical Conference, vol. 1, pp. 231-237. Oslo (1967)
[37] Rothenburg L., Bathurst R.J.: Analytical study of induced anisotropy in idealised granular material. Geotechnique 39(4), 601-614 (1989) · doi:10.1680/geot.1989.39.4.601
[38] Rothenburg L., Bathurst R.J.: Influence of particle eccentricity on micromechanical behavior of granular materials. Mech. Mater. 16(1-2), 141-152 (1993) · doi:10.1016/0167-6636(93)90037-R
[39] Rothenburg, L.; Selvadurai, A. P.S.; Selvadurai, A. P.S (ed.), A micromechanical definition of the Cauchy stress tensor for particulate media, 469-486 (1981), Ottawa
[40] Satake, M.; Luger, V. A. (ed.), Fabric tensor in granular materials, 63-68 (1982), Amsterdam
[41] Thornton C.: Numerical simulations of deviatoric shear deformation of granular media. Geotechnique 50(1), 43-53 (2000) · doi:10.1680/geot.2000.50.1.43
[42] Wan R.G., Guo P.J.: Stress dilatancy and fabric dependencies on sand behaviour. J. Eng. Mech. 130(6), 635-645 (2004) · doi:10.1061/(ASCE)0733-9399(2004)130:6(635)
[43] Weber J.D.: Recherches concernant les contraintes intergranulaires dans les milieux pulvérulents. Bulletin de Liaison Laboratoire des Ponts et Chaussées 20(3), 1-20 (1966)
[44] Wong R.K.S., Arthur J.R.F.: Sand sheared by stresses with cyclic variations in direction. Geotechnique 36(2), 215-226 (1986) · doi:10.1680/geot.1986.36.2.215
[45] Yang, L.T.: Experimental study of soil anisotropy using Hollow Cylinder testing. Ph.D, University of Nottingham, Nottingham (2013)
[46] Yoshimine M., Ishihara K., Vargas W.: Effects of principal stress direction and intermediate principal stress on undrained shear behaviour of sand. Soils Found. 38(3), 179-188 (1998) · doi:10.3208/sandf.38.3_179
[47] Yu H.S.: Plasticity and Geotechnics. Springer, Berlin (2006) · Zbl 1151.74004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.