×

Unidirectional wave propagation in a nonlocal dispersal endemic model with nonlinear incidence. (English) Zbl 07925055

Summary: This paper is concerned with existence and non-existence of traveling wave solutions in a nonlocal dispersal endemic model with nonlinear incidence. With the aid of upper-lower solutions method and Schauder’s fixed point theorem together with Lyapunov functional technique, we derive the existence of super-critical and critical traveling wave solutions connecting disease-free equilibrium to endemic equilibrium. In a combination with the theory of two-sided Laplace transform and local skilled analysis, we obtain the non-existence of sub-critical traveling wave solutions. Our results illustrate that: (i) the existence and non-existence of traveling waves are determined by the basic reproduction number and the wave speed; (ii) the critical wave speed is equal to the minimal wave speed; (iii) the traveling waves only propagate along one direction.

MSC:

35K57 Reaction-diffusion equations
37C65 Monotone flows as dynamical systems
92D30 Epidemiology
Full Text: DOI

References:

[1] H. Baek, S. Kim and P. Kim, Permanence and stability of an Ivlev-type predator-prey system with impulsive control strategies, Math. Comput. Model., 2009, 50, 1385-1393. · Zbl 1185.34067
[2] I. Barbalat, Système d’equations differentielle d’oscillations nonlinearires, Rev. Roum. Math. Pures., 1959, 4, 267-270. · Zbl 0090.06601
[3] S. Bentout, S. Djilali, T. Kuniya and J. Wang, Mathematical analysis of a vaccination epidemic model with nonlocal diffusion, Math. Method. Appl. Sci., 2023, 46, 10970-10994.
[4] V. Capasso and G. Serio, A generalization of the Kermack-Mckendrick deter-ministic epidemic model, Math. Biosci., 1978, 42, 43-61. · Zbl 0398.92026
[5] Y. Chen, J. Guo and F. Hamel, Traveling waves for a lattice dynamical system arising in a diffusive endemic model, Nonlinearity, 2017, 30, 2334-2359. · Zbl 1373.34022
[6] K. Cheng, S. Hsu and S. Lin, Some results on global stability of a predator-prey model, J. Math. Biol., 1981, 12, 115-126. · Zbl 0464.92021
[7] S. Djilali, Y. Chen and S. Bentout, Asymptotic analysis of SIR epidemic model with nonlocal diffusion and generalized nonlinear incidence functional, Math. Method. Appl. Sci., 2023, 46, 6279-6301.
[8] S. Dunbar, Traveling waves in diffusive predator-prey equations: Periodic orbits and point-to-periodic heteroclinic orbits, SIAM J. Appl. Math., 1986, 46, 1057-1078. · Zbl 0617.92020
[9] Y. Enatsua, Y. Nakata and Y. Muroya, Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model, Nonlinear Anal.-Real, 2012, 13, 2120-2133. · Zbl 1257.34065
[10] S. Fu, J. Guo and C. Wu, Traveling wave solutions for discrete diffusive epi-demic model, J. Nonlinear Convex A., 2016, 17, 1793-1751. · Zbl 1353.39005
[11] R. Gardner, Existence of traveling wave solutions of predator-prey systems via the connection index, SIAM J. Appl. Math., 1984, 44, 56-79. · Zbl 0541.35044
[12] H. Hethcote, The mathematics of infectious disease, SIAM Rev., 2000, 42, 599-653. · Zbl 0993.92033
[13] Y. Hosono and B. Ilyas, Traveling waves for a simple diffusive epidemic model, Math. Mod. Meth. Appl. S., 1995, 5, 935-966. · Zbl 0836.92023
[14] C. Hsu, C. Yang, T. Yang and T. Yang, Existence of traveling wave solutions for diffusive predator-prey type systems, J. Differ. Equations, 2012, 252, 3040-3075. · Zbl 1252.34036
[15] J. Huang, G. Lu and S. Ruan, Existence of traveling wave solutions in a diffu-sive predator-prey model, J. Math. Biol., 2003, 46, 132-152. · Zbl 1018.92026
[16] V. Ivlev, Experimental Ecology of the Feeding of Fishes, New Haven, CT: Yale University, 1961.
[17] C. Kao, Y. Lou and W. Shen, Random dospersal vs. non-local dispersal, Dis-crete and Continuous Dynamical Systems, 2010, 26, 551-596. · Zbl 1187.35127
[18] R. Kooij and A. Zegeling, A predator prey model with Ivlev’s functional re-sponse, J. Math. Anal. Appl., 1996, 198, 473-489. · Zbl 0851.34030
[19] A. Korobeinikov and P. Maini, Nonlinear incidence and stability of infectious disease models, Math. Med. Biol., 2005, 22, 113-128. · Zbl 1076.92048
[20] W. Li and F. Yang, Traveling waves for a nonlocal dispersal SIR model with standard incidence, J. Integral Equ. Appl., 2014, 26, 243-273. · Zbl 1295.35170
[21] Y. Li, W. Li and F. Yang, Traveling waves for a nonlocal dispersal SIR model with delay and external supplies, Appl. Math. Comput., 2014, 247, 723-740. · Zbl 1338.92131
[22] G. Lin, Invasion traveling wave solutions of a predator-prey system, Nonlinear Anal.-Theor., 2014, 96, 47-58. · Zbl 1284.35109
[23] R. May, Limit cycles in predator-prey communities, Science, 1972, 177, 900-902.
[24] C. Parkinson and W. Wang, Analysis of a reaction-diffusion SIR epidemic models with noncompliant behavior, SIAM J. Appl. Math., 2023, 83, 1969-2002. · Zbl 1533.35032
[25] M. Rosenzweig, Paradox of enrichment: Destabilization of exploitation ecosys-tems in ecological time, Science, 1971, 171, 385-387.
[26] J. Sugie, Two-parameter bifurcation in a predator-prey system of Ivlev type, J. Math. Anal. Appl., 1998, 217, 349-371. · Zbl 0894.34025
[27] C. Tadmon, B. Tsanou and A. F. Feukouo, Avian-human influenza epidemic model with diffusion, nonlocal delay and spatial homogeneous environment, Nonlinear Anal.-Real, 2022, 67, 103615. · Zbl 1492.35380
[28] H. Wang, K. Wang and Y. J. Kim, Spatial segregation in reaction-diffusion epimidemic models, SIAM J. Appl. Math., 2022, 82, 1680-1709. · Zbl 1501.35245
[29] H. Wang and X. Wang, Traveling wave phenomena in a Kermack-Mckendrick SIR model, J. Dyn. Differ. Equ., 2016, 28, 143-166. · Zbl 1341.92078
[30] Z. Wang and J. Wu, Traveling waves of a diffusive Kermack-Mckendrick epi-demic model with non-local delayed transmission, P. Roy. Soc. Lond. A, 2010, 466, 237-261. · Zbl 1195.35291
[31] J. Wei, J. Zhou, Z. Zhen and L. Tian, Super-critical and critical traveling waves in a three-component delayed disease system with mixed diffusion, J. Comput. Appl. Math., 2020, 367, 112451. · Zbl 1428.35631
[32] D. Widder, The Laplace Transform, NJ: Princeton University Press, Princeton, 1941. · JFM 67.0384.01
[33] J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dyn. Differ. Equ., 2001, 13, 683-692.
[34] Z. Xiang and X. Song, The dynamical behaviors of a food chain model with impulsive effect and Ivlev functional response, Chaos Soliton. Fract., 2009, 39, 2282-2293. · Zbl 1197.34012
[35] Z. Xu, Wave propagation in an infectious disease model, J. Math. Anal. Appl., 2017, 449, 853-871. · Zbl 1380.35047
[36] F. Yang, Y. Li, W. Li and Z. Wang, Traveling waves in a nonlocal disper-sal Kermack-Mckendrick epidemic model, Discrete and Continuous Dynamical Systems B, 2013, 18, 1969-1993. · Zbl 1277.35107
[37] F. Yang and W. Li, Traveling waves in a nonlocal dispersal SIR model with critical wave speed, J. Math. Anal. Appl., 2018, 458, 1131-1146. · Zbl 1378.92078
[38] F. Yang, W. Li and Z. Wang, Traveling waves in a nonlocal dispersal SIR epidemic model, Nonlinear Anal.-Real, 2015, 23, 129-147. · Zbl 1354.92096
[39] Z. Zhen, J. Wei, L. Tian, J. Zhou and W. Chen, Wave propagation in a diffusive SIR epidemic model with spatio-temporal delay, Math. Method. Appl. Sci., 2018, 41, 7074-7098. · Zbl 1402.35152
[40] Z. Zhen, J. Wei, J. Zhou and L. Tian, Wave propagation in a nonlocal diffusion epidemic model with nonlocal delayed effects, Appl. Math. Comput., 2018, 339, 15-37. · Zbl 1428.35176
[41] J. Zhou, L. Song and J. Wei, Mixed types of waves in a discrete diffusive epidemic model with nonlinear incidence and time delay, J. Differ. Equations, 2020, 268, 4491-4524. · Zbl 1440.34089
[42] J. Zhou, J. Xu, J. Wei and H. Xu, Existence and non-existence of traveling wave solutions for a nonlocal dispersal SIR epidemic model with nonlinear incidence rate, Nonlinear Anal.-Real, 2018, 41, 204-231. · Zbl 1383.35232
[43] J. Zhou and Y. Yang, Traveling waves for a nonlocal dispersal SIR model with general noneral nonlinear incidence rate and spatio-temporal delay, Discrete and Continuous Dynamical Systems B, 2017, 22, 1719-1741. · Zbl 1360.92124
[44] K. Zhou, M. Han and Q. Wang, Traveling wave solutions for delayed diffusive SIR epidemic model with nonlinear incidence rate and external supplies, Math. Method. Appl. Sci., 2017, 40, 2772-2783. · Zbl 1362.92088
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.