×

Parallel numerical solution of the time-harmonic Maxwell equations in mixed form. (English) Zbl 1274.78091

This work proposes a fully scalable parallel iterative solver for the time-harmonic Maxwell equations in a lossless medium with perfectly conducting boundaries and vanishing wave numbers. The authors adopt a mixed formulation of the Maxwell system, for which they apply the lowest-order Nedelec element space of the first family to approximate the electric field and the piecewise linear nodal finite element space to approximate the Lagrange multiplier. The discretization results in a linear saddle-point system. For the iterative solution of the linear saddle-point system, the authors apply the block diagonal preconditioning approach by C. Greif and D. Schötzau [Numer. Linear Algebra Appl. 14, No. 4, 281–297 (2007; Zbl 1199.78010)] as the outer iteration, and use the nodal auxiliary space preconditioning method by R. Hiptmair and J. Xu [SIAM J. Numer. Anal. 45, No. 6, 2483–2509 (2007; Zbl 1153.78006)] as the inner iteration for the shifted curlcurl operator. Algebraic multigrid technique is employed to solve the sequence of discrete elliptic problems involved in the inner iteration. For the Maxwell system with moderately varying coefficients, the preconditioned matrix is shown to be well conditioned, with its eigenvalues closely clustered. The performance of the proposal parallel solver is demonstrated on the Maxwell system with constant and variable coefficients. Extensive numerical results indicate a reasonable scalability of the solver with the mesh size on uniform, unstructured and locally refined meshes for the domains with complex geometries.

MSC:

78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
65F08 Preconditioners for iterative methods
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
35Q61 Maxwell equations

Software:

BoomerAMG; PETSc
Full Text: DOI

References:

[1] Chen, Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients, SIAM Journal on Numerical Analysis 37 (5) pp 1542– (2000) · Zbl 0964.78017 · doi:10.1137/S0036142998349977
[2] Demkowicz, Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements, Computer Methods in Applied Mechanics and Engineering 152 pp 103– (1998) · Zbl 0994.78011 · doi:10.1016/S0045-7825(97)00184-9
[3] Hiptmair, Finite elements in computational electromagnetism, Acta Numerica 11 pp 237– (2002) · Zbl 1123.78320 · doi:10.1017/S0962492902000041
[4] Monk, Finite Element Methods for Maxwell’s Equations (2003) · Zbl 1024.78009 · doi:10.1093/acprof:oso/9780198508885.001.0001
[5] Vardapetyan, hp-adaptive finite elements in electromagnetics, Computer Methods in Applied Mechanics and Engineering 169 pp 331– (1999) · Zbl 0956.78013 · doi:10.1016/S0045-7825(98)00161-3
[6] Jin, The Finite Element Method in Electromagnetics (1993)
[7] Nédélec, Mixed finite elements in \(\mathbb{R}\)3, Numerische Mathematik 35 pp 315– (1980) · Zbl 0419.65069 · doi:10.1007/BF01396415
[8] Greif, Preconditioners for the discretized time-harmonic Maxwell equations in mixed form, Numerical Linear Algebra with Applications 14 (4) pp 281– (2007) · Zbl 1199.78010 · doi:10.1002/nla.515
[9] Hiptmair, Multigrid method for Maxwell’s equations, SIAM Journal on Numerical Analysis 36 (1) pp 204– (1998) · Zbl 0922.65081 · doi:10.1137/S0036142997326203
[10] Bochev, An improved algebraic multigrid method for solving Maxwell’s equations, SIAM Journal on Scientific Computing 25 pp 623– (2003) · Zbl 1163.76337 · doi:10.1137/S1064827502407706
[11] Jones, A multigrid method for variable coefficient Maxwell’s equations, SIAM Journal on Scientific Computing 27 (5) pp 1689– (2006) · Zbl 1096.78007 · doi:10.1137/040608283
[12] Reitzinger, An algebraic multigrid method for finite element discretizations with edge elements, Numerical Linear Algebra with Applications 9 (3) pp 223– (2002) · Zbl 1071.65170 · doi:10.1002/nla.271
[13] Gopalakrishnan, Overlapping Schwarz preconditioners for indefinite time harmonic Maxwell equations, Mathematics of Computation 72 pp 1– (2003) · Zbl 1009.78009 · doi:10.1090/S0025-5718-01-01406-5
[14] Gopalakrishnan, Analysis of a multigrid algorithm for time harmonic Maxwell equations, SIAM Journal on Numerical Analysis 42 pp 90– (2004) · Zbl 1079.78025 · doi:10.1137/S003614290139490X
[15] Hiptmair, Nodal auxiliary space preconditioning in H(curl) and H(div) spaces, SIAM Journal on Numerical Analysis 45 (6) pp 2483– (2007) · Zbl 1153.78006 · doi:10.1137/060660588
[16] Kolev, Parallel auxiliary space AMG for H(curl) problems, Journal of Computational Mathematics 27 (5) pp 604– (2009) · Zbl 1212.65128 · doi:10.4208/jcm.2009.27.5.013
[17] Balay S Gropp WD McInnes LC Smith BF PETSc users manual 2006
[18] Falgout R Cleary A Jones J Chow E Henson V Baldwin C Brown P Vassilevski P Yang UM http://acts.nersc.gov/hypre/ 2010
[19] Karypis G http://glaros.dtc.umn.edu/gkhome/views/metis/ 2010
[20] Si H http://tetgen.berlios.de/ 2010
[21] Brezzi, Mixed and Hybrid Finite Element Methods (1991) · Zbl 0788.73002 · doi:10.1007/978-1-4612-3172-1
[22] Paige, Solution of sparse indefinite systems of linear equations, SIAM Journal on Numerical Analysis 12 pp 617– (1975) · Zbl 0319.65025 · doi:10.1137/0712047
[23] Li D Numerical solution of the time-harmonic Maxwell equations and incompressible magnetohydrodynamics problems 2010
[24] Griebel, On the abstract theory of additive and multiplicative Schwarz algorithms, Numerische Mathematik 70 (2) pp 163– (1995) · Zbl 0826.65098 · doi:10.1007/s002110050115
[25] Xu, The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids, Computing 56 (3) pp 215– (1996) · Zbl 0857.65129 · doi:10.1007/BF02238513
[26] Henson, BoomerAMG: a parallel algebraic multigrid solver and preconditioner, Applied Numerical Mathematics 41 pp 155– (2000) · Zbl 0995.65128 · doi:10.1016/S0168-9274(01)00115-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.