×

Strong and weak convergence rates of logarithmic transformed truncated EM methods for SDEs with positive solutions. (English) Zbl 1504.65016

Summary: To inherit numerically the positivity of stochastic differential equations (SDEs) with non-globally Lipschitz coefficients, we devise a novel explicit method, called logarithmic transformed truncated Euler-Maruyama method. There is however a price to be paid for the preserving positivity, namely that the logarithmic transformation would cause the coefficients of the transformed SDEs growing super-linearly or even exponentially, which makes the strong and weak convergence analysis more complicated. Based on the exponential integrability, truncation techniques and some other arguments, we show that the strong convergence rate of the underlying numerical method is \(1 / 2\), and the weak convergence rate can be arbitrarily close to 1. To the best of our knowledge, this is the first result establishing the weak convergence rate of numerical methods for the general SDEs with positive solutions. Numerical experiments are finally reported to confirm our theoretical results.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
Full Text: DOI

References:

[1] Kahl, C.; Schurz, H., Balanced Milstein methods for ordinary SDEs, Monte Carlo Methods Appl., 12, 2, 143-170 (2006) · Zbl 1105.65009
[2] Kahl, C.; Günther, M.; Rossberg, T., Structure preserving stochastic integration schemes in interest rate derivative modeling, Appl. Numer. Math., 58, 3, 284-295 (2008) · Zbl 1141.65323
[3] Alfonsi, A., On the discretization schemes for the CIR (and Bessel squared) processes, Monte Carlo Methods Appl., 11, 4, 355-384 (2005) · Zbl 1100.65007
[4] Dereich, S.; Neuenkirch, A.; Szpruch, L., An Euler-type method for the strong approximation of the Cox-Ingersoll-Ross process, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 468, 2140, 1105-1115 (2012) · Zbl 1364.65013
[5] Cozma, A.; Reisinger, C., Strong order 1/2 convergence of full truncation Euler approximations to the Cox-Ingersoll-Ross process, IMA J. Numer. Anal., 40, 1, 358-376 (2018) · Zbl 1461.91326
[6] Szpruch, L.; Mao, X.; Higham, D. J.; Pan, J., Numerical simulation of a strongly nonlinear Ai̇t-Sahalia type interest rate model, BIT, 51, 2, 405-425 (2011) · Zbl 1230.65011
[7] Berkaoui, A.; Bossy, M.; Diop, A., Euler scheme for SDEs with non-Lipschitz diffusion coefficient: Strong convergence, ESAIM Probab. Stat., 12, 1-11 (2008) · Zbl 1183.65004
[8] Neuenkirch, A.; Szpruch, L., First order strong approximations of scalar SDEs defined in a domian, Numer. Math., 128, 103-136 (2014) · Zbl 1306.60075
[9] Bossy, M.; Olivero, H., Strong convergence of the symmetrized Milstein scheme for some CEV-like SDEs, Bernoulli, 24, 3, 1995-2042 (2018) · Zbl 1426.60067
[10] Higham, D. J.; Mao, X.; Sapruch, L., Convergence, non-negativity and stability of a new milstein scheme with applications to finance, Discrete Contin. Dyn. Syst. Ser. B, 18, 8, 2083-2100 (2013) · Zbl 1279.60068
[11] Mao, X.; Wei, F.; Wiriyakraikul, T., Positivity preserving truncated Euler-Maruyama method for stochastic Lotka-Volterra competition model, J. Comput. Appl. Math., 394, Article 113566 pp. (2021) · Zbl 1465.65008
[12] Hutzenthaler, M.; Jentzen, A.; Kloeden, P., Strong convergence of an explicit numerical method for SDEs with non-globally Lipschitz continuous coefficients, Ann. Appl. Probab., 22, 4, 1611-1641 (2012) · Zbl 1256.65003
[13] Sabanis, S., Euler approximations with varying coefficients: The case of superlinearly growing diffusion coefficients, Ann. Appl. Probab., 26, 2083-2105 (2016) · Zbl 1352.60101
[14] Mao, X., Convergence rates of the truncated Euler-Maruyama method for stochastic differential equations, J. Comput. Appl. Math., 296, 362-375 (2016) · Zbl 1378.65036
[15] Li, X.; Mao, X.; Yin, G., Explicit numerical approximations for stochastic differential equations in finite and infinite horizons: Truncation methods, convergence in \(p\) th moment and stability, IMA J. Numer. Anal., 39, 847-892 (2019) · Zbl 1461.65007
[16] Yi, Y.; Hu, Y.; Zhao, J., Positivity preserving logarithmic Euler-Maruyama type scheme for stochastic differential equations, Commun. Nonlinear Sci. Numer. Simul., 101, Article 105895 pp. (2021) · Zbl 1492.60179
[17] Karatzas, I.; Shreve, S., Brownian Motion and Stochastic Calculus (1991), Springer-Verlag: Springer-Verlag New York · Zbl 0734.60060
[18] Mao, X.; Rassias, M. J., Khasminskii-type theorems for stochastic differential delay equations, Stoch. Anal. Appl., 23, 1045-1069 (2005) · Zbl 1082.60055
[19] Kloeden, P. E.; Platen, E., Numerical Solution of Stochastic Differential Equations (1992), Springer-Verlag: Springer-Verlag Berlin · Zbl 0925.65261
[20] Mao, X., Stochastic Differential Equations and Applications (2008), Academic Press
[21] Friedman, A., Stochastic Differential Equations and Applications. Vol. 1 (1977), Academic Press: Academic Press New York
[22] Klebaner, F. C., Introduction To Stochastic Calculus with Applications (2006), Springer-Verlag: Springer-Verlag Berlin
[23] Hörmander, L., Linear Partial Differential Operators I (1963), Springer · Zbl 0171.06802
[24] Milstein, G. N.; Tretyakov, M. V., Stochastic Numerics for Mathematical Physics (2004), Springer-Verlag: Springer-Verlag Berlin · Zbl 1085.60004
[25] Andersen, L.; Piterbarg, V., Moment explosions in stochastic volatility models, Financ. Stoch., 11, 1, 29-50 (2007) · Zbl 1142.65004
[26] Mao, X., The truncated Euler-Maruyama method for stochastic differential equations, J. Comput. Appl. Math., 290, 370-384 (2015) · Zbl 1330.65016
[27] Jiang, F.; Yang, H.; Tian, T., Property and numerical simulation of the Ai-Sahalia-Rho model with nonlinear growth conditions, Discrete Contin. Dyn. Syst. Ser. B, 22, 1, 101-113 (2017) · Zbl 1360.60111
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.