×

Perturbation selection and influence measures in local influence analysis. (English) Zbl 1129.62068

Summary: R. D. Cook’s [J. R. Stat. Soc., Ser. B 48, 133–169 (1986; Zbl 0608.62041)] local influence approach based on normal curvature is an important diagnostic tool for assessing local influence of minor perturbations to a statistical model. However, no rigorous approach has been developed to address two fundamental issues: the selection of an appropriate perturbation and the development of influence measures for objective functions at a point with a nonzero first derivative. The aim of this paper is to develop a differential-geometrical framework of a perturbation model (called the perturbation manifold) and utilize the associated metric tensor and affine curvatures to resolve these issues.
We show that the metric tensor of the perturbation manifold provides important information about selecting an appropriate perturbation of a model. Moreover, we introduce new influence measures that are applicable to objective functions at any point. Examples including linear regression models and linear mixed models are examined to demonstrate the effectiveness of using new influence measures for the identification of influential observations.

MSC:

62J20 Diagnostics, and linear inference and regression
53C99 Global differential geometry
53B99 Local differential geometry

Citations:

Zbl 0608.62041

References:

[1] Amari, S. (1985). Differential-Geometrical Methods in Statistics. Lecture Notes in Statist. 28 . Springer, Berlin. · Zbl 0559.62001
[2] Bates, D. M. and Watts, D. G. (1980). Relative curvature measures of nonlinearity (with discussion). J. Roy. Statist. Soc. Ser. B 42 1-25. · Zbl 0455.62028
[3] Beckman, R. J., Nachtsheim, C. J. and Cook, R. D. (1987). Diagnostics for mixed-model analysis of variance. Technometrics 29 413-426. · Zbl 0632.62068 · doi:10.2307/1269452
[4] Carroll, R. J., Ruppert, D. and Stefanski, L. A. (1995). Measurement Error in Nonlinear Models . Chapman and Hall, London. · Zbl 0853.62048
[5] Claeskens, G. and Hjort, N. L. (2004). Goodness of fit via non-parametric likelihood ratios. Scand. J. Statist. 31 487-513. · Zbl 1065.62056 · doi:10.1111/j.1467-9469.2004.00403.x
[6] Coddington, E. A. (1961). An Introduction to Ordinary Differential Equations . Prentice Hall, Englewood Cliffs, NJ. · Zbl 0123.27301
[7] Cook, R. D. (1986). Assessment of local influence (with discussion). J. Roy. Statist. Soc. Ser. B 48 133-169. · Zbl 0608.62041
[8] Cook, R. D. and Weisberg, S. (1982). Residuals and Influence in Regression . Chapman and Hall, London. · Zbl 0564.62054
[9] Cox, D. R. and Reid, N. (1987). Parameter orthogonality and approximate conditional inference (with discussion). J. Roy. Statist. Soc. Ser. B 49 1-39. · Zbl 0616.62006
[10] Efron, B. (1975). Defining the curvature of a statistical problem (with applications to second order efficiency) (with discussion). Ann. Statist. 3 1189-1242. · Zbl 0321.62013 · doi:10.1214/aos/1176343282
[11] Fung, W. and Kwan, C. (1997). A note on local influence based on normal curvature. J. Roy. Statist. Soc. Ser. B 59 839-843. · Zbl 0886.62073 · doi:10.1111/1467-9868.00100
[12] Fung, W., Zhu, Z., Wei, B. and He, X. (2002). Influence diagnostics and outlier tests for semiparametric mixed models. J. R. Stat. Soc. Ser. B Stat. Methodol. 64 565-579. · Zbl 1090.62039 · doi:10.1111/1467-9868.00351
[13] Ibrahim, J. G., Chen, M.-H., Lipsitz, S. R. and Herring, A. H. (2005). Missing-data methods for generalized linear models: A comparative review. J. Amer. Statist. Assoc. 100 332-346. · Zbl 1117.62360 · doi:10.1198/016214504000001844
[14] Kass, R. E. and Vos, P. W. (1997). Geometrical Foundations of Asymptotic Inference. Wiley, New York. · Zbl 0880.62005
[15] Lauritzen, S. L. (1987). Statistical manifolds. In Differential Geometry in Statistical Inference (S. Amari, O. E. Barndorff-Nielsen, R. E. Kass, S. L. Lauritzen and C. R. Rao, eds.) 163-216. IMS, Hayward, CA. · Zbl 0694.62001
[16] Lawrance, A. J. (1988). Regression transformation diagnostics using local influence. J. Amer. Statist. Assoc. 83 1067-1072. · doi:10.1080/01621459.1988.10478702
[17] Lee, S. and Tang, N. (2004). Local influence analysis of nonlinear structural equation models, Psychometrika 69 573-592. · Zbl 1306.62461 · doi:10.1007/BF02289856
[18] Li, B. and McCullagh, P. (1994). Potential functions and conservative estimating functions. Ann. Statist. 22 340-356. · Zbl 0805.62003 · doi:10.1214/aos/1176325372
[19] McCullagh, P. and Cox, D. R. (1986). Invariants and likelihood ratio statistics. Ann. Statist. 14 1419-1430. · Zbl 0615.62041 · doi:10.1214/aos/1176350167
[20] Murray, M. K. and Rice, J. W. (1993). Differential Geometry and Statistics. Chapman and Hall, London. · Zbl 0804.53001
[21] Ouwens, M. J. N., Tan, F. and Berger, M. (2001). Local influence to detect influential data structures for generalized linear mixed models. Biometrics 57 1166-1172. · Zbl 1209.62169 · doi:10.1111/j.0006-341X.2001.01166.x
[22] Pan, J. and Fang, K. (2002). Growth Curve Models and Statistical Diagnostics . Springer, New York. · Zbl 1024.62025
[23] Poon, W. and Poon, Y. (1999). Conformal normal curvature and assessment of local influence. J. Roy. Stat. Soc. Ser. B Stat. Methodol. 61 51-61. · Zbl 0913.62062 · doi:10.1111/1467-9868.00162
[24] Stier, D. M., Leventhal, J. M., Berg, A. T., Johnson, L. and Mezger, J. (1993). Are children born to young mothers at increased risk of maltreatment? Pediatrics 91 642-648.
[25] St. Laurent, R. T. and Cook, R. D. (1993). Leverage, local influence and curvature in nonlinear regression. Biometrika 80 99-106. · Zbl 0769.62044 · doi:10.1093/biomet/80.1.99
[26] Tsai, C. and Wu, X. (1992). Transformation-model diagnostics. Technometrics 34 197-202.
[27] Verbeke, G. and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data . Springer, New York. · Zbl 0956.62055
[28] Verbeke, G., Molenberghs, G., Thijs, H., Lesaffre, E. and Kenward, M. G. (2001). Sensitivity analysis for nonrandom dropout: A local influence approach. Biometrics 57 7-14. · Zbl 1209.62170 · doi:10.1111/j.0006-341X.2001.00007.x
[29] Wasserman, D. R. and Leventhal, J. M. (1993). Maltreatment of children born to cocaine-dependent mothers. American J. Diseases of Children 147 1324-1328.
[30] Wei, B., Hu, Y. and Fung, W. (1998). Generalized leverage and its applications. Scand. J. Statist. 25 25-37. · Zbl 0905.62070 · doi:10.1111/1467-9469.00086
[31] Wu, X. and Luo, Z. (1993). Second-order approach to local influence. J. Roy. Statist. Soc. Ser. B 55 929-936. · Zbl 0798.62032
[32] Wu, X. and Luo, Z. (1993). Residual sum of squares and multiple potential, diagnostics by a second-order local approach. Statist. Probab. Lett. 16 289-296.
[33] Yuan, K.-H. and Bentler, P. M. (2001). Effect of outliers on estimators and tests in covariance structure analysis. British J. Math. Statist. Psych. 54 161-175. · doi:10.1348/000711001159366
[34] Zhang, H. (1997). Multivariate adaptive splines for the analysis of longitudinal data. J. Comput. Graph. Statist. 6 74-91.
[35] Zhang, H. (1999). Analysis of infant growth curves using multivariate adaptive splines. Biometrics 55 452-459. · Zbl 1059.62740 · doi:10.1111/j.0006-341X.1999.00452.x
[36] Zhong, X., Wei, B. and Fung, W. (2000). Influence analysis for linear measurement error models. Ann. Inst. Statist. Math. 52 367-379. · Zbl 0971.62038 · doi:10.1023/A:1004126108349
[37] Zhu, H. and Lee, S. (2001). Local influence for incomplete data models. J. R. Stat. Soc. Ser. B Stat. Methodol. 63 111-126. · Zbl 0976.62071 · doi:10.1111/1467-9868.00279
[38] Zhu, H. and Lee, S. (2003). Local influence for generalized linear mixed models. Canad. J. Statist. 31 293-309. · Zbl 1042.62068 · doi:10.2307/3316088
[39] Zhu, H. and Wei, B. (1997). Preferred point \(\alpha\)-manifold and Amari’s \(\alpha\)-connections. Statist. Probab. Lett. 36 219-229. · Zbl 0944.62004 · doi:10.1016/S0167-7152(97)00065-5
[40] Zhu, H. and Zhang, H. (2004). A diagnostic procedure based on local influence. Biometrika 91 579-589. · Zbl 1108.62031 · doi:10.1093/biomet/91.3.579
[41] Zhu, Z., He, X. and Fung, W. (2003). Local influence analysis for penalized Gaussian likelihood estimators in partially linear models. Scand. J. Statist. 30 767-780. · Zbl 1053.62054 · doi:10.1111/1467-9469.00363
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.