×

An introductory overview of action-derived molecular dynamics for multiple time-scale simulations. (English) Zbl 1079.74505

Summary: We briefly review the action-derived molecular dynamics (ADMD) that has recently been developed for the atomistic simulation of infrequent-event systems such as surface diffusion process and complex molecular formation. The method is specifically designed to find a dynamical trajectory when the final atomic configuration is given as a priori. ADMD has its theoretical foundation in the least action principles. According to the formulation, the most probable dynamical trajectory connecting the initial and final atomic configurations, is determined through minimizing an appropriate object function that is derived from the classical action by imposing dynamical conditions as required as the conservations of total energy. It thus enables us to find the actual dynamical path of the systems, which is a distinguishing feature compared with other similar methods such as the nudged elastic band method. In this paper, we present our recent simulation results using ADMD, as well as an introduction to its theoretical background and enhanced algorithms.

MSC:

74A25 Molecular, statistical, and kinetic theories in solid mechanics
74S30 Other numerical methods in solid mechanics (MSC2010)
74-02 Research exposition (monographs, survey articles) pertaining to mechanics of deformable solids
Full Text: DOI

References:

[1] W.K. Liu, E.G. Karpov, S. Zhang, H.S. Park, An introduction to computational nano mechanics and materials, Comput. Methods Appl. Mech. Engrg. doi:10.1016/j.cma.2003.12.008, and Articles in This Special Issue on Multiscale Nano Mechanics and Materials; W.K. Liu, E.G. Karpov, S. Zhang, H.S. Park, An introduction to computational nano mechanics and materials, Comput. Methods Appl. Mech. Engrg. doi:10.1016/j.cma.2003.12.008, and Articles in This Special Issue on Multiscale Nano Mechanics and Materials · Zbl 1079.74506
[2] Wagner, G. J.; Liu, W. K., Coupling of atomistic and continuum simulations using a bridging scale decomposition, J. Comput. Phys., 190, 249-274 (2003) · Zbl 1169.74635
[3] Voter, A. F., A method for accelerating the molecular dynamics simulation of infrequent events, J. Chem. Phys., 106, 4665-4677 (1997)
[4] Voter, A. F., Parallel replica method for dynamics of infrequent events, Phys. Rev. B, 57, R13985-R13988 (1998)
[5] Sørensen, M. R.; Voter, A. F., Temperature-accelerated dynamics for simulation of infrequent events, J. Chem. Phys., 112, 9599-9606 (2000)
[6] Miron, R. A.; Fichthorn, K. A., Accelerated molecular dynamics with the bond-boost method, J. Chem. Phys., 119, 6210-6216 (2003)
[7] Zwanzig, R., Nonequilibrium Statistical Mechanics (2001), Oxford University Press: Oxford University Press Oxford, UK · Zbl 1267.82001
[8] Voter, A. F.; Montalenti, F.; Germann, T. C., Extending the time scale in atomistic simulation of materials, Ann. Rev. Mater. Res., 32, 321-346 (2002)
[9] Bell, S.; Crighton, J. S., Locating transition states, J. Chem. Phys., 80, 2464-2475 (1984)
[10] Elber, R.; Karplus, M., A method for determining reaction paths in large molecules: application to myoglobin, Chem. Phys. Lett., 139, 375-380 (1987)
[11] Jónsson, H.; Mills, G.; Jacobsen, K. W., Nudged elastic band method for finding minimum energy paths of transitions, (Berne, B. J.; Ciccotti, G.; Coker, D. F., Classical and Quantum Dynamics in Condensed Phase Simulations (1998), World Scientific)
[12] Passerone, D.; Parrinello, M., Action-derived molecular dynamics in the study of rare events, Phys. Rev. Lett., 87, 108302-108305 (2001)
[13] Passerone, D.; Ceccarelli, M.; Parrinello, M., A concerted variational strategy for investigating rare events, J. Chem. Phys., 118, 2025-2032 (2003)
[14] Lee, I.-H.; Lee, J.; Lee, S., Kinetic energy control in action-derived molecular dynamics simulations, Phys. Rev. B, 68, 64303-64310 (2003)
[15] Kim, Y.-H.; Lee, I.-H.; Chang, K. J.; Lee, S., Dynamics of fullerene coalescence, Phys. Rev. Lett., 90, 65501-65504 (2003)
[16] Verlet, L., Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Phys. Rev., 159, 98-103 (1967)
[17] Cho, A. E.; Doll, J. D.; Freeman, D. L., The construction of double-ended classical trajectories, Chem. Phys. Lett., 229, 218-224 (1994)
[18] Onsager, L.; Machlup, S., Fluctuations and irreversible processes, Phys. Rev., 91, 1505-1512 (1953) · Zbl 0053.15106
[19] Olender, R.; Elber, R., Calculation of classical trajectories with a very large time step: formalism and numerical examples, J. Chem. Phys., 105, 9299-9315 (1996)
[20] Tersoff, J., Empirical interatomic potential for carbon, with applications to amorphous carbon, Phys. Rev. Lett., 61, 2879-2882 (1988)
[21] Neugebauer, J.; Zywietz, T. K.; Scheffler, M.; Northrup, J. E.; Chen, H.; Feenstra, R. M., Adatom kinetics on and below the surface: the existence of a new diffusion channel, Phys. Rev. Lett., 90, 56101-56104 (2003)
[22] Ala-Nissila, T.; Ferrando, R.; Ying, S. C., Collective and single particle diffusion on surfaces, Adv. Phys., 51, 949-1078 (2002)
[23] Rosato, V.; Guillopé, M.; Legrand, B., Thermodynamic and structural properties of f.c.c. transition metals using a simple tight-binding model, Phil. Mag. A, 59, 321-336 (1989)
[24] Cleri, F.; Rosato, V., Tight-binding potentials for transition metals and alloys, Phys. Rev. B, 48, 22-33 (1993)
[25] Li, J., AtomEye: an efficient atomistic configuration viewer, Modelling Simul. Mater. Sci. Engrg., 11, 173-177 (2003)
[26] Smith, B. W.; Monthioux, M.; Luzzi, D. E., Carbon nanotube encapsulated fullerenes: a unique class of hybrid materials, Chem. Phys. Lett., 315, 31-36 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.