×

Application of chaos in a recurrent neural network to control in ill-posed problems: a novel autonomous robot arm. (English) Zbl 1402.93183

Summary: Inspired by a viewpoint that complex/chaotic dynamics would play an important role in biological systems including the brain, chaotic dynamics introduced in a recurrent neural network was applied to robot control in ill-posed situations. By computer experiments we show that a model robot arm without an advanced visual processing function can catch a target object and bring it to a set position under ill-posed situations (e.g., in the presence of unknown obstacles). The key idea in these works is adaptive switching of a system parameter (connectivity) between a chaos regime and attractor regime in a neural network model, which generates, depending on environmental circumstances, either chaotic motions or definite motions corresponding to embedded attractors. The adaptive switching results in useful functional motions of the robot arm. These successful experiments indicate that chaotic dynamics is potentially useful for practical engineering control applications. In addition, this novel autonomous arm system is implemented in a hardware robot arm that can avoid obstacles and reach for a target in a situation where the robot can get only rough target information, including uncertainty, by means of a few sensors, as indicated in the appendices.

MSC:

93C85 Automated systems (robots, etc.) in control theory
93C40 Adaptive control/observation systems
68T40 Artificial intelligence for robotics
34H10 Chaos control for problems involving ordinary differential equations
68T05 Learning and adaptive systems in artificial intelligence
92B20 Neural networks for/in biological studies, artificial life and related topics
Full Text: DOI

References:

[1] Aihara, K.; Takabe, T.; Toyoda, M., Chaotic neural networks, Phys Lett A, 114, 333-340, (1990) · doi:10.1016/0375-9601(90)90136-C
[2] Anderson JA, Rosenfeld E (eds) (1988) NEUROCOMPUTING. The MIT Press, Cambridge
[3] Anderson JA, Rosenfeld E (eds) (1990) NEUROCOMPUTING 2. The MIT Press, Cambridge
[4] Arhem P, Blomberg C, Liljenström H (2000) Disorder versus order in brain functioning—essays in theoretical neurophysics. World Scientific Publ. Co, London · doi:10.1142/4170
[5] Babloyantz, A.; Destexhe, A., Low-dimensional chaos in an instance of epilepsy, Proc Natl Acad Sci USA, 83, 3513-3517, (1986) · doi:10.1073/pnas.83.10.3513
[6] Fujii, H.; Itoh, H.; Ichinose, N.; Tsukada, M., Dynamical cell assembly hypothesis—theoretical possibility of spatiotemporal coding in the cortex, Neural Netw, 9, 1303-1350, (1996) · Zbl 0899.92008 · doi:10.1016/S0893-6080(96)00054-8
[7] Hayashi, H.; Ishizuka, S.; Ohta, M.; Hirakawa, K., Chaotic behavior in the onchidium giant neuron under sinusoidal stimulation, Phys Lett A, 88, 435-438, (1982) · doi:10.1016/0375-9601(82)90674-0
[8] Hopfield, JJ, Neural networks and physical systems with emergent collective computational abilities, Proc Natl Acad Sci USA, 79, 2554-2558, (1982) · Zbl 1369.92007 · doi:10.1073/pnas.79.8.2554
[9] Hopfield, JJ, Neurons with graded response have collective computational properties like those of two-state neurons, Proc Natl Acad Sci USA, 81, 3088-3092, (1984) · Zbl 1371.92015 · doi:10.1073/pnas.81.10.3088
[10] Huber, F.; Thorson, H., Cricket auditory communication, Sci Am, 253, 60-68, (1985) · doi:10.1038/scientificamerican1285-60
[11] Kaneko, K.; Tsuda, I., Chaotic itinerancy, Chaos, 13, 926-936, (2003) · Zbl 1080.37531 · doi:10.1063/1.1607783
[12] Kuroiwa J, Nara S, Aihara K (1999) Functional possibility of chaotic behaviour in a single chaotic neuron model for dynamical signal processing elements. In: 1999 IEEE international conference on systems, man, and cybernetics (SMC’99), Tokyo, October, 1999, vol 1, p 290
[13] Li, Y.; Kurata, S.; Morita, S.; Shimizu, S.; Munetaka, D.; Nara, S., Application of chaotic dynamics in a recurrent neural network to control: hardware implementation into a novel autonomous roving robot, Biol Cybern, 99, 185-196, (2008) · Zbl 1153.92004 · doi:10.1007/s00422-008-0249-6
[14] Liljenström, H., Autonomous learning with complex dynamics, Int J Intell Syst, 10, 119-153, (1995) · Zbl 0840.92006 · doi:10.1002/int.4550100109
[15] Nara, S., Can potentially useful dynamics to solve complex problems emerge from constrained chaos and/or chaotic itinerancy?, Chaos, 13, 1110-1121, (2003) · doi:10.1063/1.1604251
[16] Nara, S.; Davis, P., Chaotic wandering and search in a cycle memory neural network, Prog Theor Phys, 88, 845-855, (1992) · doi:10.1143/ptp/88.5.845
[17] Nara, S.; Davis, P., Learning feature constraints in a chaotic neural memory, Phys Rev E, 55, 826-830, (1997) · doi:10.1103/PhysRevE.55.826
[18] Nara, S.; Davis, P.; Kawachi, M.; Totuji, H., Memory search using complex dynamics in a recurrent neural network model, Neural Netwo, 6, 963-973, (1993) · doi:10.1016/S0893-6080(09)80006-3
[19] Nara, S.; Davis, P.; Kawachi, M.; Totuji, H., Chaotic memory dynamics in a recurrent neural network with cycle memories embedded by pseudo-inverse method, Int J Bifurc Chaos Appl Sci Eng, 5, 1205-1212, (1995) · Zbl 0886.58106 · doi:10.1142/S0218127495000867
[20] Nicolelis, MAL, Actions from thoughts, Nature, 409, 403-407, (2001) · doi:10.1038/35053191
[21] Physiome (2012) http://www.physiome.jp/index.html. It should be noted that, generally speaking, Platform sites in web-system is often not permanent but rather improved and/or changed occasionally. So, readers should be careful when they access via internet
[22] Skarda, CA; Freeman, WJ, How brains make chaos in order to make sense of the world, Behav Brain Sci, 10, 161-195, (1987) · doi:10.1017/S0140525X00047336
[23] Soma, K.; Mori, R.; Sato, R.; Furumai, N.; Nara, S., Simultaneous multichannel signal transfers via chaos in a recurrent neural network, Neural Comput, 27, 1083-1101, (2015) · Zbl 1414.92049 · doi:10.1162/NECO_a_00715
[24] Suemitsu, Y.; Nara, S., A solution for two-dimensional mazes with use of chaotic dynamics in a recurrent neural network model, Neural Comput, 16, 1943-1957, (2004) · Zbl 1090.68566 · doi:10.1162/0899766041336440
[25] Suemitsu, Y.; Nara, S., Emergence of unstable itinerant orbits in a recurrent neural network model, Phys Lett A, 344, 220-228, (2005) · Zbl 1194.34146 · doi:10.1016/j.physleta.2005.06.071
[26] Tsuda, I., Chaotic itinerancy as a dynamical basis of hermeneutics in brain and mind, World Futures, 32, 167-184, (1991) · doi:10.1080/02604027.1991.9972257
[27] Tsuda, I., Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems, Behav Brain Sci, 24, 793-847, (2001) · doi:10.1017/S0140525X01000097
[28] Yao, Y.; Freeman, WJ, Model of biological pattern recognition with spatially chaotic dynamics, Neural Netw, 3, 153-170, (1990) · doi:10.1016/0893-6080(90)90086-Z
[29] Yoshinaka, R.; Kawashima, M.; Nabeta, K.; Li, Y.; Nara, S.; Madani, K. (ed.); Correia, AD (ed.); Rosa, A. (ed.); Filipe, J. (ed.), Adaptive control of robot systems with simple rules using chaotic dynamics in quasi-layered recurrent neural networks, 287-305, (2012), Berlin Heidelberg · doi:10.1007/978-3-642-27534-0_19
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.