×

Influence of inertia and drag terms on the stability of mixed convection in a vertical porous-medium channel. (English) Zbl 1201.80028

Summary: We report the influence of different terms appearing in the momentum equation on the stability of buoyancy-assisted mixed convection in a vertical channel filled with a porous medium. Four different models: (i) Darcy-Brinkman (DB), (ii) Darcy-Brinkman-Forchheimer (DBF), (iii) Darcy-Brinkman-Wooding (DBW), and (iv) Darcy-Brinkman-Forchheimer-Wooding (DBFW) are considered and a comparative study is made based on a linear stability analysis. We consider a Prandtl number range of Pr = 0.1-10, which corresponds to water and gases. Judged from the instability boundary curves, it is found that with reduction of Darcy number there exists an equivalence of DB with DBF model from one side, and an equivalence of DBW with DBFW model from the other side. When the medium is a gas, a significant difference between DB and DBW (or DBF and DBFW) is visible, which is not the case for water. Furthermore, it is found that in case of a gas, inertia force destabilizes the flow, whereas, form drag stabilizes it. In contrast to a fluid-filled channel (where inertia term always destabilizes the buoyancy-assisted flow), here this destabilizing property might turn into a stabilizing one when fluid viscosity and permeability of the medium are changed. In the case of water, for Da \(= 10^{ - 2}\), the inertia term stabilizes the flow beyond Re = 25. When Da is reduced by one order of magnitude, the destabilizing effect continued up to Re = 220. The combined effect of form drag (Forchheimer term) and inertia (Wooding term) on the stability of the flow is more intensive than their individual effects provided the medium is highly permeable. In most cases studied here, the disturbance flow patterns are similar for DB and DBF from one side, and DBW and DBFW from the other side.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
76R10 Free convection
76R05 Forced convection
76S05 Flows in porous media; filtration; seepage
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI

References:

[1] Nield, D. A.; Bejan, A.: Convection in porous media, (2006) · Zbl 1256.76004
[2] Vafai, K.; Tien, C. L.: Boundary and inertia effects on flow and heat transfer in porous media, Int. J. Heat mass transfer 24, 195-203 (1981) · Zbl 0464.76073 · doi:10.1016/0017-9310(81)90027-2
[3] Hsu, C. T.; Cheng, P.: Thermal dispersion in a porous medium, Int. J. Heat mass transfer 33, 1587-1597 (1990) · Zbl 0703.76079 · doi:10.1016/0017-9310(90)90015-M
[4] Kaviany, M.: Principles of heat transfer in porous media, (1985) · Zbl 0889.76002
[5] Bera, P.; Khalili, A.: Stability of mixed-convection in an anisotropic porous channel, Phys. fluids 14, 1617-1630 (2002) · Zbl 1185.76047 · doi:10.1063/1.1460879
[6] Chen, Y. C.: Non-Darcy flow stability of mixed-convection in a vertical channel filled with a porous medium, Int. J. Heat mass transfer 47, 1257-1266 (2004) · Zbl 1045.76525 · doi:10.1016/j.ijheatmasstransfer.2003.09.010
[7] Bera, P.; Khalili, A.: Influence of Prandtl number on stability of mixed convective flow in a vertical channel filled with a porous medium, Phys. fluids 18, 124103-1-124103-10 (2006) · Zbl 1146.76324 · doi:10.1063/1.2405321
[8] Rose, H. E.: On the resistance coefficient-Reynolds number relationship for fluid flow through a bed of granular materials, Proc. lond. Inst. mech. Eng. 153, 154-161 (1945)
[9] Scheidegger, A. E.: The physics of flow through porous media, (1974) · Zbl 0082.40402
[10] Hannoura, A. A.; Barends, F.: Non-Darcy flow; a state of the art, Flow and transport in porous media (1981)
[11] Mei, C. C.; Auriault, J. L.: The effect of weak inertia on flow through a porous medium, J. fluid mech. 222, 647-663 (1991) · Zbl 0718.76099 · doi:10.1017/S0022112091001258
[12] Giorgi, T.: Derivation of the Forchheimer law via matched asymptotic expansions, Transp. porous media 29, 191-206 (1997)
[13] Firdaouss, M.; Guermond, J. L.; Quéré, P. L.: Nonlinear corrections to Darcy’s law at low Reynolds numbers, J. fluid mech. 343, 331-350 (1997) · Zbl 0897.76091 · doi:10.1017/S0022112097005843
[14] Skjetne, E.; Auriault, J. L.: High-velocity laminar and turbulent flow in porous media, Transp. porous media 36, 131-147 (1999) · Zbl 0935.76088
[15] Brinkman, H. C.: On the permeability of media consisting of closely packed porous particles, Appl. sci. Res. 1, 81-86 (1949)
[16] Lundgren, T. S.: Slow flow through stationary random beds and suspensions of spheres, J. fluid mech. 51, 273-299 (1972) · Zbl 0229.76067 · doi:10.1017/S002211207200120X
[17] Givler, R. C.; Altobelli, S. A.: A determination of the effective viscosity for the Brinkman – Forchheimer flow model, J. fluid mech. 258, 355-370 (1994)
[18] Martys, N.; Bentz, D. P.; Garboczi, E. J.: Computer simulation study of the effective viscosity in Brinkman’s equation, Phys. fluids 6, 1434-1439 (1994) · Zbl 0825.76819 · doi:10.1063/1.868258
[19] Valdes-Parada, F. J.; Ochoa-Tapia, J. A.; Alvarez-Ramirez, J.: On the effective viscosity for the Darcy – Brinkman equation, Physica A 385, 69-79 (2007)
[20] Breugem, W. P.: The effective viscosity of a channel-type porous medium, Phys. fluids 19, 103104-1-103104-8 (2007) · Zbl 1182.76084 · doi:10.1063/1.2792323
[21] Hill, A. A.; Straughan, B.: Poiseuille flow in a fluid overlying a porous medium, J. fluid mech. 603, 137-149 (2008) · Zbl 1151.76454 · doi:10.1017/S0022112008000852
[22] Whitaker, S.: The method of volume averaging, (1999)
[23] Tilton, N.; Cortelezzi, L.: Linear stability analysis of pressure-driven flows in channels with porous walls, J. fluid mech. 604, 411-445 (2008) · Zbl 1151.76459 · doi:10.1017/S0022112008001341
[24] Muskat, M.: The flow of homogeneous fluids through porous media, (1946)
[25] Ward, J. C.: Turbulent flow in porous media, J. hydr. Div. ASCE 90, 1-12 (1964)
[26] Dullien, F. A. L.; Azzam, M. I. S.: Flow rate-pressure gradient measurements in periodically nonuniform capillary tubes, Aiche J. 19, 222-229 (1973)
[27] Ahmed, N.; Sunada, D. K.: Nonlinear flow in porous media, J. hydr. Div. ASCE 95, 1847-1857 (1969)
[28] Ruth, D. W.; Ma, H.: On the derivation of the Forchheimer equation by means of the averaging theorem, Transp. porous media 7, 255-264 (1992)
[29] Hassanizadeh, S. M.; Gray, W. G.: High-velocity flow in porous media, Transp. porous media 2, 521-531 (1987)
[30] Whitaker, S.: The Forchheimer equation: a theoretical development, Transp. porous media 25, 27-61 (1996)
[31] Beavers, G. S.; Sparrow, E. M.: Non-Darcy flow through fibrous porous media, J. appl. Mech. 36, 711-714 (1969)
[32] Beavers, G. S.; Sparrow, E. M.; Rodenz, D. E.: Influence of bed size on the flow characteristics and porosity of randomly packed beds of spheres, J. appl. Mech. 40, 655-660 (1973)
[33] Coulaud, O.; Morel, P.; Caltagirone, J. P.: Numerical modeling of nonlinear effects in laminar flow through a porous medium, J. fluid mech. 190, 393-407 (1988) · Zbl 0644.76107 · doi:10.1017/S0022112088001375
[34] Poulikakos, D.: Buoyancy-driven convection in a horizontal fluid layer extending over a porous substrate, Phys. fluids 29, 3949-3957 (1986)
[35] Vafai, K.; Kim, S. J.: On the limitations of the Brinkman – Forchheimer-extended Darcy equation, Int. J. Heat fluid flow 16, 11-15 (1995)
[36] Nield, D. A.; Junqueira, S. L. M.; Lage, J. L.: Forced convection in a fluid-saturated porous-medium channel with isothermal or iso-flux boundaries, J. fluid mech. 322, 201-214 (1996) · Zbl 0882.76086 · doi:10.1017/S0022112096002765
[37] Delache, A.; Ouarzazi, M. N.; Combarnous, M.: Spatio-temporal stability analysis of mixed-convection flows in porous media heated from below: comparison with experiments, Int. J. Heat mass transfer 50, 1485-1499 (2007) · Zbl 1124.80319 · doi:10.1016/j.ijheatmasstransfer.2006.08.040
[38] Wooding, R. A.: Steady state free thermal convection of liquid in a saturated permeable medium, J. fluid mech. 2, 273-285 (1957) · Zbl 0077.39803 · doi:10.1017/S0022112057000129
[39] Slattery, J. C.: Single-phase flow through porous media, Aiche J. 15, 866-872 (1969)
[40] Prasad, V.; Kulacki, F. A.; Keyhani, M.: Natural convection in porous media, J. fluid mech. 150, 89-119 (1985)
[41] Nithiarasu, P.; Seetharamu, K. N.; Sundararajan, T.: Numerical investigation of buoyancy driven flow in a fluid-saturated non-darcian porous medium, Int. J. Heat mass transfer 42, 1205-1215 (1999) · Zbl 0977.76079 · doi:10.1016/S0017-9310(98)00254-3
[42] Khalili, A.; Basu, A. J.; Pietrzyk, U.; Raffel, M.: An experimental study of recirculating flow through fluid-sediment interfaces, J. fluid mech. 383, 229-247 (1999) · Zbl 0941.76530 · doi:10.1017/S0022112098003942
[43] Alazmi, B.; Vafai, K.: Analysis of variants within the porous media transport models, ASME J. Heat transfer 122, 303-326 (2000)
[44] Desaive, T.; Lebon, G.; Hennenberg, M.: Coupled capillary and gravity-driven instability in a liquid film overlying a porous layer, Phys. rev. E 64, 066304-1-066304-1-8 (2001)
[45] Guo, Z.; Zhao, T. S.: Lattice Boltzmann model for incompressible flows through porous media, Phys. rev. E 66, 036304-1-036304-9 (2002)
[46] Basu, A. J.; Khalili, A.: Computation of flow through a fluid-sediment interface in a benthic chamber, Phys. fluids 11, 1395-1405 (1999) · Zbl 1147.76315 · doi:10.1063/1.870004
[47] Drazin, P. G.; Reid, W. H.: Hydrodynamic stability, (2004) · Zbl 1055.76001
[48] Chen, Y. C.; Chung, J. N.: The linear stability of mixed-convection in a vertical channel flow, J. fluid mech. 325, 29-51 (1996) · Zbl 0905.76029 · doi:10.1017/S0022112096008026
[49] Su, Y. C.; Chung, J. N.: Linear stability analysis of mixed-convection flow in a vertical pipe, J. fluid mech. 422, 141-166 (2000) · Zbl 1003.76028 · doi:10.1017/S0022112000001762
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.