×

Kinetic coefficients in a time-dependent Green’s function formalism at finite temperature. (English. Russian original) Zbl 1519.81521

Theor. Math. Phys. 213, No. 3, 1774-1788 (2022); translation from Teor. Mat. Fiz. 213, No. 3, 538-554 (2022).
Summary: We discuss microscopic foundations of dissipation arising in a model Fermi or Bose system with weak local interaction. We consider the dynamics of equilibrium fluctuations in the Keldysh-Schwinger formalism and discuss the relation between dissipation and pinch singularities of perturbation theory diagrams. Using the Dyson equation, we define and calculate the dissipation parameter in the two-loop approximation. We show that this parameter is analogous to Onsager’s kinetic coefficient and is associated with decay in the quasiparticle spectrum.

MSC:

81V72 Particle exchange symmetries in quantum theory (general)
82B30 Statistical thermodynamics
46L57 Derivations, dissipations and positive semigroups in \(C^*\)-algebras
53C20 Global Riemannian geometry, including pinching
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
82B35 Irreversible thermodynamics, including Onsager-Machlup theory
81V25 Other elementary particle theory in quantum theory
Full Text: DOI

References:

[1] Zubarev, D. N.; Morozov, V.; Röpke, G., Statistical Mechanics of Nonequilibrium Processes (1996), Berlin: Akademie Verlag, Berlin · Zbl 0890.00008
[2] Zubarev, D.; Morozov, V.; Röpke, G., Statistical Mechanics of Nonequilibrium Processes, Statistical Mechanics of Nonequilibrium Processes (1996), Berlin: Akademie Verlag, Berlin · Zbl 0890.00008
[3] Brauner, T.; Hartnoll, S.; Kovtun, P.; Liu, H.; Mezei, M.; Nicolis, A.; Penco, R.; Shao, S.-H.; Son, D. T., Snowmass white paper: effective field theories for condensed matter systems (0000)
[4] Bluhm, M.; Kalweit, A.; Nahrgang, M., Dynamics of critical fluctuations: Theory – phenomenology – heavy-ion collisions, Nucl. Phys. A, 1003 (2020) · doi:10.1016/j.nuclphysa.2020.122016
[5] Feynman, R. P.; Vernon, Jr., F. L., The theory of a general quantum system interacting with a linear dissipative system, Ann. Phys., 24, 118-173 (1963) · doi:10.1016/0003-4916(63)90068-X
[6] Patriarca, M., Feynman Vernon model of a moving thermal environment, Phys. E, 29, 243-250 (2005) · doi:10.1016/j.physe.2005.05.021
[7] Weiss, U., Quantum Dissipative Systems (2008), Singapore: World Sci., Singapore · Zbl 1166.81005 · doi:10.1142/6738
[8] Rivas, Á.; Huelga, S. F., Open Quantum Systems. An Introduction (2012), Berlin, Heidelberg: Springer, Berlin, Heidelberg · Zbl 1246.81006 · doi:10.1007/978-3-642-23354-8
[9] Lindblad, G., On the generators of quantum dynamical semigroups, Commun. Math. Phys., 48, 119-130 (1976) · Zbl 0343.47031 · doi:10.1007/BF01608499
[10] Gorini, V.; Kossakowski, A.; Sudarshan, E. C. G., Completely positive dynamical semigroups of \(N\)-level systems, J. Math. Phys., 17, 821-825 (1976) · Zbl 1446.47009 · doi:10.1063/1.522979
[11] Nathan, F.; Rudner, M. S., Universal Lindblad equation for open quantum systems, Phys. Rev. B, 102 (2020) · doi:10.1103/PhysRevB.102.115109
[12] Tarasov, V., Quantum Mechanics of Non-Hamiltonian and Dissipative Systems (2008), Amsterdam: Elsevier, Amsterdam · Zbl 1213.81004
[13] Kubo, R., Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Japan, 12, 570-586 (1957) · doi:10.1143/JPSJ.12.570
[14] Kubo, R.; Yokota, M.; Nakajima, S., Statistical-mechanical theory of irreversible processes. II. Response to thermal disturbance, J. Phys. Soc. Japan, 12, 1203-1211 (1957) · doi:10.1143/JPSJ.12.1203
[15] Mouas, M.; Gasser, J.-G.; Hellal, S.; Grosdidier, B.; Makradi, A.; Belouettar, S., Diffusion and viscosity of liquid tin: Green’s-Kubo relationship-based calculations from molecular dynamics simulations, J. Chem. Phys., 136 (2012) · doi:10.1063/1.3687243
[16] Liu, Pu; Harder, E.; Berne, B. J., On the calculation of diffusion coefficients in confined fluids and interfaces with an application to the liquid-vapor interface of water, J. Phys. Chem. B, 108, 6595-6602 (2004) · doi:10.1021/jp0375057
[17] Volkov, N. A.; Posysoev, M. V.; Shchekin, A. K., The effect of simulation cell size on the diffusion coefficient of an ionic surfactant aggregate, Colloid J., 80, 248-254 (2018) · doi:10.1134/S1061933X1803016X
[18] Adzhemyan, L. Ts.; Kuni, F. M.; Novozhilova, T. Yu., Nonlinear generalization of Mori’s method of projection operators, Theoret. and Math. Phys., 18, 274-280 (1974) · Zbl 0325.76010 · doi:10.1007/BF01035649
[19] Eliashberg, G. M., Transport equation for a degenerate system of fermi particles, Sov. Phys. JETP, 14, 886-892 (1962) · Zbl 0116.45403
[20] Arseev, P. I., On the nonequilibrium diagram technique: derivation, some features, and applications, Phys. Usp., 58, 1159-1205 (2015) · doi:10.3367/UFNe.0185.201512b.1271
[21] Sieberer, L. M.; Chiocchetta, A.; Gambassi, A.; Täuber, U. C.; Diehl, S., Thermodynamic equilibrium as a symmetry of the Schwinger-Keldysh action, Phys. Rev. B, 92 (2015) · doi:10.1103/PhysRevB.92.134307
[22] Vasilev, A. N., The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics (2004), Boca Raton, FL: Chapman & Hall/CRC, Boca Raton, FL · Zbl 1140.82019 · doi:10.1201/9780203483565
[23] Honkonen, J.; Komarova, M. V.; Molotkov, Yu. G.; Nalimov, M. Yu., Effective large-scale model of boson gas from microscopic theory, Nucl. Phys. B, 939, 105-129 (2019) · Zbl 1409.82017 · doi:10.1016/j.nuclphysb.2018.12.015
[24] Maghrebi, M. F.; Gorshkov, A. V., Nonequilibrium many-body steady states via Keldysh formalism, Phys. Rev. B, 93 (2016) · doi:10.1103/PhysRevB.93.014307
[25] Leeuwen, R. van; Dahlen, N.; Stefanucci, G.; Almbladh, C.-O.; Barth, U. von, Introduction to the Keldysh formalism, Time-Dependent Density Functional Theory, 33-59 (2006), Berlin: Springer, Berlin · doi:10.1007/3-540-35426-3_3
[26] Haehl, F. M.; Loganayagam, R.; Rangamani, M., Schwinger-Keldysh formalism I: BRST symmetries and superspace, JHEP, 2017 (2017) · Zbl 1380.81369 · doi:10.1007/JHEP06(2017)069
[27] M. J. B. Pereira, Keldysh field theory (preprint), University of Säo Paulo, Säo Paulo (2019).
[28] Geracie, M.; Haehl, F. M.; Loganayagam, R.; Narayan, P.; Ramirez, D. M.; Rangamani, M., Schwinger-Keldysh superspace in quantum mechanics, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.105023
[29] Kamenev, A.; Levchenko, A., Keldysh technique and non-linear \(\sigma \)-model: basic principles and applications, Adv. Phys., 58, 197-319 (2009) · doi:10.1080/00018730902850504
[30] Rammer, J., Quantum Field Theory of Non-Equilibrium States (2007), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 1123.82001 · doi:10.1017/CBO9780511618956
[31] Rammer, J.; Smith, H., Quantum field-theoretical methods in transport theory of metals, Rev. Modern Phys., 58, 323-359 (1986) · doi:10.1103/RevModPhys.58.323
[32] Kadanoff, L. P.; Baym, G., Quantum Statistical Mechanics. Green’s’s function methods in equilibrium and nonequilibrium problems (1962), New York: Benjamin, New York · Zbl 0115.22901
[33] Tanaka, T.; Nishida, Y., Thermal conductivity of a weakly interacting Bose gas by quasi-one dimensionality (0000)
[34] Jeon, S., Hydrodynamic transport coefficients in relativistic scalar field theory, Phys. Rev. D, 52, 3591-3642 (1995) · doi:10.1103/PhysRevD.52.3591
[35] Jeon, S.; Yaffe, L. G., From quantum field theory to hydrodynamics: Transport coefficients and effective kinetic theory, Phys. Rev. D, 53, 5799-5809 (1996) · doi:10.1103/PhysRevD.53.5799
[36] Hidaka, Y.; Kunihiro, T., Renormalized linear kinetic theory as derived from quantum field theory: A novel diagrammatic method for computing transport coefficients, Phys. Rev. D, 83 (2011) · doi:10.1103/PhysRevD.83.076004
[37] Nieves, J. F.; Sahu, S., Taming the pinch singularities in the two-loop neutrino self-energy in a medium (0000)
[38] Akhmedov, E. T.; Moschella, U.; Popov, F. K., Characters of different secular effects in various patches of de Sitter space, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.086009
[39] Akhmedov, E. T.; Burda, Ph., Solution of the Dyson-Schwinger equation on a de Sitter background in the infrared limit, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.044031
[40] Akhmedov, E. T.; Popov, F. K.; Slepukhin, V. M., Infrared dynamics of the massive \(\phi_4\) theory on de Sitter space, Phys. Rev. D, 88 (2013) · doi:10.1103/PhysRevD.88.024021
[41] Akhmedov, E. T.; Astrakhantsev, N.; Popov, F. K., Secularly growing loop corrections in strong electric fields, JHEP, 09 (2014) · doi:10.1007/JHEP09(2014)071
[42] Abrikosov, A. A.; Gorkov, L. P.; Dzyaloshinski, I. E., Methods of Quantum Field Theory in Statistical Physics (2012), New York: Dover Publ., New York · Zbl 0135.45003
[43] Andersen, J. O., Theory of the weakly interacting Bose gas, Rev. Modern Phys., 76, 599-639 (2004) · Zbl 1205.82040 · doi:10.1103/RevModPhys.76.599
[44] Honkonen, J., Contour-ordered Green’s’s functions in stochastic field theory, Theoret. and Math. Phys., 175, 827-834 (2013) · Zbl 1286.81134 · doi:10.1007/s11232-013-0069-2
[45] Honkonen, J.; Komarova, M. V.; Molotkov, Yu. G.; Nalimov, M. Yu., Kinetic theory of boson gas, Theoret. and Math. Phys., 200, 1360-1373 (2019) · Zbl 1433.82012 · doi:10.1134/S0040577919090095
[46] Vasil’ev, A. N., Functional Methods in Quantum Field Theory and Statistical Physics (1998), London: Gordon and Breach, London · Zbl 0956.81504
[47] Zhavoronkov, Yu. A.; Komarova, M. V.; Molotkov, Yu. G.; Nalimov, M. Yu.; Honkonen, J., Critical dynamics of the phase transition to the superfluid state, Theoret. and Math. Phys., 200, 1237-1251 (2019) · Zbl 1428.82071 · doi:10.1134/S0040577919080142
[48] Keldysh, L. V., Diagram technique for nonequilibrium processes, Sov. Phys. JETP, 20, 1018-1026 (1965)
[49] Schwinger, J., Brownian motion of a quantum oscillator, J. Math. Phys., 2, 407-432 (1961) · Zbl 0098.43503 · doi:10.1063/1.1703727
[50] Hyrkäs, M. J.; Karlsson, D.; Leeuwen, R. van, Cutting rules and positivity in finite temperature many-body theory, J. Phys. A: Math. Theor., 55 (2022) · Zbl 1511.81146 · doi:10.1088/1751-8121/ac802d
[51] Hwa, R. C.; Teplitz, V. L., Homology and Feynman Integrals (1966), New York: Benjamin, New York · Zbl 0139.46301
[52] Wyld, Jr., H. W., Formulation of the theory of turbulence in an incompressible fluid, Ann. Phys., 14, 143-165 (1961) · Zbl 0099.42003 · doi:10.1016/0003-4916(61)90056-2
[53] Landau, L. D.; Lifshitz, E. M., Course of Theoretical Physics (2013), Amsterdam: Elsevier, Amsterdam
[54] Adzhemyan, L. Ts.; Evdokimov, D. A.; Hnatič, M.; Ivanova, E. V.; Kompaniets, M. V.; Kudlis, A.; Zakharov, D. V., Model A of critical dynamics: 5-loop expansion study, Phys. A, 600 (2022) · Zbl 07543446 · doi:10.1016/j.physa.2022.127530
[55] Adzhemyan, L. Ts.; Evdokimov, D. A.; Hnatič, M.; Ivanova, E. V.; Kompaniets, M. V.; Kudlis, A.; Zakharov, D. V., The dynamic critical exponent z for 2d and 3d Ising models from five-loop \(\varepsilon\) expansion, Phys. Lett. A, 425 (2022) · Zbl 07543446 · doi:10.1016/j.physleta.2021.127870
[56] Täuber, U. C., Critical Dynamics: A Field Theory Approach to Equilibrium and Non- Equilibrium Scaling Behavior (2014), Cambridge: Cambridge Univ. Press, Cambridge · doi:10.1017/CBO9781139046213
[57] Täuber, U. C., Renormalization group: applications in statistical physics, Nucl. Phys. B: Proc. Suppl., 228, 7-34 (2012) · doi:10.1016/j.nuclphysbps.2012.06.002
[58] Gnatich, M.; Komarova, M. V.; Nalimov, M. Yu., Microscopic justification of the stochastic F-model of critical dynamics, Theoret. and Math. Phys., 175, 779-787 (2013) · Zbl 1286.82020 · doi:10.1007/s11232-013-0064-7
[59] Ershov, A. A.; Il’in, A. M., Asymptotics of two-dimensional integrals depending singularly on a small parameter, Proc. Steklov Institute of Mathematics, 268, 131-142 (2010) · Zbl 1305.41031 · doi:10.1134/S008154381005010X
[60] Ershov, A. A.; Rusanova, M. I., Asymptotics of multidimensional integrals depending singularly on a small parameter, Proc. Steklov Institute of Mathematics, 297, 72-80 (2017) · Zbl 1377.41019 · doi:10.1134/S008154381705008X
[61] Danilin, A. R.; Il’in, A. M., Asymptotic Methods in Analysis (in Russian) (2009), Moscow: Fizmatlit, Moscow · Zbl 1211.34003
[62] Mattuck, R. D., A Guide to Feynman Diagrams in the Many-Body Problem (2012), New York: Dover Publ., New York
[63] Sulpizio, J.; Ella, L.; Rozen, A., Visualizing Poiseuille flow of hydrodynamic electrons, Nature, 576, 75-79 (2019) · doi:10.1038/s41586-019-1788-9
[64] Novoselov, K.; Geim, A. K.; Morozov, S., Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438, 197-200 (2005) · doi:10.1038/nature04233
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.