×

Improving a cortical pyramidal neuron model’s classification performance on a real-world ECG dataset by extending inputs. (English) Zbl 1533.92112

Summary: Pyramidal neurons display a variety of active conductivities and complex morphologies that support nonlinear dendritic computation. Given growing interest in understanding the ability of pyramidal neurons to classify real-world data, in our study we applied both a detailed pyramidal neuron model and the perceptron learning algorithm to classify real-world ECG data. We used Gray coding to generate spike patterns from ECG signals as well as investigated the classification performance of the pyramidal neuron’s subcellular regions. Compared with the equivalent single-layer perceptron, the pyramidal neuron performed poorly due to a weight constraint. A proposed mirroring approach for inputs, however, significantly boosted the classification performance of the neuron. We thus conclude that pyramidal neurons can classify real-world data and that the mirroring approach affects performance in a way similar to non-constrained learning.

MSC:

92C55 Biomedical imaging and signal processing
92B20 Neural networks for/in biological studies, artificial life and related topics

Software:

NEURON; t-SNE
Full Text: DOI

References:

[1] Amit, DJ; Wong, KYM; Campbell, C., Perceptron learning with sign-constrained weights, Journal of Physics A: Mathematical and General, 22, 12, 2039-2045 (1989) · doi:10.1088/0305-4470/22/12/009
[2] Bicknell, BA; Häusser, M., A synaptic learning rule for exploiting nonlinear dendritic computation, Neuron, 109, 24, 4001-4017.e10 (2021) · doi:10.1016/j.neuron.2021.09.044
[3] Braganza, O.; Beck, H., The circuit motif as a conceptual tool for multilevel neuroscience, Trends in Neurosciences, 41, 3, 128-136 (2018) · doi:10.1016/j.tins.2018.01.002
[4] Chapeton, J.; Fares, T.; LaSota, D., Efficient associative memory storage in cortical circuits of inhibitory and excitatory neurons, Proceedings of the National Academy of Sciences, 109, 51, E3614-E3622 (2012) · doi:10.1073/pnas.1211467109
[5] Galloni, A.R., Laffere, A., Rancz, E. (2020). Apical length governs computational diversity of layer 5 pyramidal neurons. eLife, 9:e55. doi:10.7554/elife.55761
[6] Gerstner, W.; Kistler, WM, Spiking neuron models: Single neurons, populations, plasticity, Cambridge University Press (2002) · Zbl 1100.92501 · doi:10.1017/cbo9780511815706
[7] Gerstner, W.; Kistler, WM; Naud, R., Neuronal dynamics: From single neurons to networks and models of cognition, Cambridge University Press (2014) · doi:10.1017/cbo9781107447615
[8] Gidon, A.; Zolnik, TA; Fidzinski, P., Dendritic action potentials and computation in human layer 2/3 cortical neurons, Science, 367, 6473, 83-87 (2020) · doi:10.1126/science.aax6239
[9] Gütig, R.; Sompolinsky, H., The tempotron: A neuron that learns spike timing-based decisions, Nature Neuroscience, 9, 3, 420-428 (2006) · doi:10.1038/nn1643
[10] Hay, E., Hill, S., Schürmann, F., et al. (2011). Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLoS Computational Biology 7(7):e1002. doi:10.1371/journal.pcbi.1002107
[11] Hines, ML; Carnevale, NT, The NEURON simulation environment, Neural Computation, 9, 6, 1179-1209 (1997) · doi:10.1162/neco.1997.9.6.1179
[12] Hines, ML; Davison, AP; Muller, E., NEURON and Python. Frontiers in Neuroinformatics, 3, 1 (2009) · doi:10.3389/neuro.11.001.2009
[13] Hinton, G.E., Roweis, S. (2002). Stochastic neighbor embedding. In: Advances in Neural Information Processing Systems, vol 15. MIT Press, pp 857-864, https://proceedings.neurips.cc/paper_files/paper/2002/file/6150ccc6069bea6b5716254057a194ef-Paper.pdf
[14] Hodgkin, AL; Huxley, AF, A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology, 117, 4, 500-544 (1952) · doi:10.1113/jphysiol.1952.sp004764
[15] Izhikevich, EM, Dynamical Systems in Neuroscience, The MIT Press (2007) · doi:10.7551/mitpress/2526.001.0001
[16] Katz, Y.; Menon, V.; Nicholson, DA, Synapse distribution suggests a two-stage model of dendritic integration in CA1 pyramidal neurons, Neuron, 63, 2, 171-177 (2009) · doi:10.1016/j.neuron.2009.06.023
[17] Lapicque, L., Recherches quantitatives sur l’excitation electrique des nerfs traitee comme une polarization, Journal de physiologie et de pathologie générale, 9, 620-635 (1907)
[18] Legenstein, R., Maass, W. (2011). Branch-specific plasticity enables self-organization of nonlinear computation in single neurons. Journal of Neuroscience 31(30):10,787-10,802. doi:10.1523/jneurosci.5684-10.2011
[19] Legenstein, R.; Naeger, C.; Maass, W., What can a neuron learn with spike-timing-dependent plasticity?, Neural Computation, 17, 11, 2337-2382 (2005) · Zbl 1075.68635 · doi:10.1162/0899766054796888
[20] Limbacher, T.; Legenstein, R., Emergence of stable synaptic clusters on dendrites through synaptic rewiring, Frontiers in Computational Neuroscience, 14, 57 (2020) · doi:10.3389/fncom.2020.00057
[21] London, M.; Häusser, M., Dendritic computation, Annual Review of Neuroscience, 28, 1, 503-532 (2005) · doi:10.1146/annurev.neuro.28.061604.135703
[22] van der Maaten, L., Hinton, G. (2008). Visualizing data using t-sne. Journal of Machine Learning Research, 9(11):2579-2605. http://jmlr.org/papers/v9/vandermaaten08a.html · Zbl 1225.68219
[23] Magee, JC, Dendritic integration of excitatory synaptic input, Nature Reviews Neuroscience, 1, 3, 181-190 (2000) · doi:10.1038/35044552
[24] McCulloch, WS; Pitts, W., A logical calculus of the ideas immanent in nervous activity, The Bulletin of Mathematical Biophysics, 5, 4, 115-133 (1943) · Zbl 0063.03860 · doi:10.1007/bf02478259
[25] Moldwin, T.; Segev, I., Perceptron learning and classification in a modeled cortical pyramidal cell, Frontiers in Computational Neuroscience, 14, 33 (2020) · doi:10.3389/fncom.2020.00033
[26] Monteiro, J.; Pedro, A.; Silva, AJ, A Gray Code model for the encoding of grid cells in the Entorhinal Cortex, Neural Computing and Applications, 34, 3, 2287-2306 (2021) · doi:10.1007/s00521-021-06482-w
[27] Moody, G.; Mark, R., The impact of the MIT-BIH arrhythmia database, IEEE Engineering in Medicine and Biology Magazine, 20, 3, 45-50 (2001) · doi:10.1109/51.932724
[28] Poirazi, P.; Mel, BW, Impact of active dendrites and structural plasticity on the memory capacity of neural tissue, Neuron, 29, 3, 779-796 (2001) · doi:10.1016/s0896-6273(01)00252-5
[29] Poirazi, P.; Brannon, T.; Mel, BW, Pyramidal neuron as two-layer neural network, Neuron, 37, 6, 989-999 (2003) · doi:10.1016/s0896-6273(03)00149-1
[30] Polsky, A.; Mel, BW; Schiller, J., Computational subunits in thin dendrites of pyramidal cells, Nature Neuroscience, 7, 6, 621-627 (2004) · doi:10.1038/nn1253
[31] Rao. A., Legenstein, R., Subramoney, A., et al. (2021). Self-supervised learning of probabilistic prediction through synaptic plasticity in apical dendrites: A normative model. bioRxiv doi:10.1101/2021.03.04.433822
[32] Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton Project Para. Cornell Aeronautical Laboratory
[33] Shai, A.S., Anastassiou, C.A., Larkum, M.E., et al. (2015). Physiology of layer 5 pyramidal neurons in mouse primary visual cortex: Coincidence detection through bursting. PLOS Computational Biology, 11(3):e1004. doi:10.1371/journal.pcbi.1004090
[34] Sidiropoulou, K.; Pissadaki, EK; Poirazi, P., Inside the brain of a neuron, EMBO reports, 7, 9, 886-892 (2006) · doi:10.1038/sj.embor.7400789
[35] Song, S.; Sjöström, PJ; Reigl, M., Highly nonrandom features of synaptic connectivity in local cortical circuits, PLoS Biology, 3, 3 (2005) · doi:10.1371/journal.pbio.0030068
[36] Spruston, N., Pyramidal neurons: Dendritic structure and synaptic integration, Nature Reviews Neuroscience, 9, 3, 206-221 (2008) · doi:10.1038/nrn2286
[37] Ujfalussy, B. B., Makara, J. K., Lengyel, M., et al. (2018). Global and multiplexed dendritic computations under in vivo-like conditions. Neuron,100(3), 579-592.e5. doi:10.1016/j.neuron.2018.08.032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.