×

A simple mathematical model for Ebola in Africa. (English) Zbl 1448.92276

Summary: We deal with the following question: Can the consumption of contaminated bush meat, the funeral practices and the environmental contamination explain the recurrence and persistence of Ebola virus disease outbreaks in Africa? We develop an SIR-type model which, incorporates both the direct and indirect transmissions in such a manner that there is a provision of Ebola viruses. We prove that the full model has one (endemic) equilibrium which is locally asymptotically stable whereas, it is globally asymptotically stable in the absence of the Ebola virus shedding in the environment. For the sub-model without the provision of Ebola viruses, the disease dies out or stabilizes globally at an endemic equilibrium. At the endemic level, the number of infectious is larger for the full model than for the sub-model without provision of Ebola viruses. We design a nonstandard finite difference scheme, which preserves the dynamics of the model. Numerical simulations are provided.

MSC:

92D30 Epidemiology
34A34 Nonlinear ordinary differential equations and systems
65L03 Numerical methods for functional-differential equations

Software:

Be-CoDiS

References:

[1] F.B. Agusto, M.I. Teboh-Ewungkem, and A.B. Gumel, Mathematical assessment of the effect of traditional beliefs and customs on the transmission dynamics of the 2014 Ebola outbreaks, BMC Med. 13 (2015), p. 96. doi: 10.1186/s12916-015-0318-3[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[2] C. Althaus, Estimating the reproduction number of Ebola (EBOV) during outbreak in West Africa, PLOS Curr. 1 (2014), Sept 2. [Google Scholar]
[3] R. Anguelov and J.M.-S. Lubuma, Contributions to the mathematics of the nonstandard finite difference method and applications, Numer. Methods Partial Differ. Equ. 17 (2001), pp. 518-543. doi: 10.1002/num.1025[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0988.65055
[4] R. Anguelov, Y. Dumont, J.M.-S. Lubuma, and M. Shillor, Comparison of some standard and nonstandard numerical methods for the MSEIR Epidemiological Model, in Proceedings of the International Conference of Numerical Analysis and Applied Mathematics, Crete, Greece, 18-22 September 2009, Volume 2, American Institute of Physics Conference Proceedings - (AIP 1168), T. Simos, G. Psihoyios, and Ch. Tsitouras, eds., pp. 1209-1212. doi: 10.1063/1.3241285. [Crossref], [Google Scholar] · Zbl 1183.37147
[5] M. Bani-Yabhoub, R. Gautam, Z. Shuai, P. van den Driessche, and R. Ivanek, Reproduction numbers for infections with free-living pathogens growing in the environment, J. Biol. Dyn. 6(2) (2012), pp. 923-940. doi: 10.1080/17513758.2012.693206[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1447.92395
[6] T. Berge, S. Bowong, and J.M.-S. Lubuma, Global stability of a two patch cholera model with fast and slow transmissions, Math. Comput. Simul. In Press, doi: 10.1016/j.matcom.2015.10.013. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 1540.92177
[7] K. Bibby, L.W. Casson, E. Stachler, and C.N. Haas, Ebola virus persistence in the environment: state of the knowledge and research needs, Environ. Sci. Technol. Lett. 2 (2015), pp. 2-6. doi: 10.1021/ez5003715[Crossref], [Web of Science ®], [Google Scholar]
[8] C. Castillo-Chavez, Z. Feng, and W. Huang, On the computation of ##img####img####img##R0 and its role on global stability, in Mathematical Approaches for Emerging and reemerging Infectious Diseases: An Introduction (Minneapolis, MN, 1999), IMA Vol. Math. Appl. Vol. 125, Springer, New York, 2002, pp. 229-250. [Google Scholar] · Zbl 1021.92032
[9] G. Chowell and H. Nishiura, Transmission dynamics and control of Ebola virus disease (EVD): A review, BMC Med. 12 (2014), p. 196. doi: 10.1186/s12916-014-0196-0[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[10] G. Chowell, N.W. Hengartner, C. Castillo-Chavez, P.W. Fenimore, and J.M. Hyman, The basic reproductive number of Ebola and the effects of public health measures: The cases of Congo and Uganda, J. Theor. Biol. 229 (2004), pp. 119-126. doi: 10.1016/j.jtbi.2004.03.006[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1440.92062
[11] D.T. Dimitrov and H.V. Kojouharov, Positive and elementary stable nonstandard numerical methods with applications to predator-prey models, J. Comput. Appl. Math. 189 (2006), pp. 98-108. doi: 10.1016/j.cam.2005.04.003[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1087.65068
[12] Y. Dumont, J.C. Russell, V. Lecomte, and M. Le Corre, Conservation of endangered endemic seabirds within a multi-predator context: The Barau’s petrel in Reunion island, Nat. Resour. Model. 23 (2010), pp. 381-436. doi: 10.1111/j.1939-7445.2010.00068.x[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1402.92340
[13] Ebola (Ebola Virus Disease). The Centers for Disease Control and Prevention, Available at http://www.cdc.gov/ebola/resources/virus-ecology.html, (Page last reviewed August 1, 2014). [Google Scholar]
[14] B. Espinoza, V. Moreno, D. Bichara, and C. Castillo-Chavez, Assessing the efficiency of Cordon Sanitaire as a control strategy of Ebola, preprint (2015). Available at arXiv: 1510.07415v1 [q-bio.PE] 26 Oct 2015. [Google Scholar] · Zbl 1347.92089
[15] F.O. Fasina, A. Shittu, D. Lazarus, O. Tomori, L. Simonsen, C. Viboud, and G. Chowell, Transmission dynamics and control of Ebola virus disease outbreak in Nigeria, July to September 2014. Euro Surveill. 2014;19(40): pii=20920. Available at: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20920http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20920. [Google Scholar]
[16] D. Fisman, E. Khoo, and A. Tuite, Early epidemic dynamics of the Western African 2014 Ebola outbreak: Estimates derived with a simple two Parameter model, PLOS Curr. Outbreaks (2014), Sep 8. Edition 1. doi: 10.1371/currents.outbreaks.89c0d3783f36958d96ebbae97348d571. [Crossref], [Google Scholar]
[17] P. Francesconi, Z. Yoti, S. Declich, P.A. Onek, M. Fabiani, J. Olango, R. Andraghetti, P.E. Rollin,C. Opira, D. Greco, and S. Salmaso, Ebola hemorrhagic fever transmission and risk factors of contacts, Uganda, Emerg. Infect. Dis. 9(11) (2003), pp. 1430-1437. doi: 10.3201/eid0911.030339[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[18] A.B. Gumel, K.C. Patidar, and R.J. Spiteri, Asymptotically consistent non-standard finite-difference methods for solving mathematical models arising in population biology, in Advances in the Applications of Nonstandard Finite Difference Schemes, R.E. Mickens, ed. World Scientific Publishing, Hackensack, NJ, 2005, pp. 385-421. [Google Scholar] · Zbl 1086.65080
[19] B. Ivorra, D. Ngom, and A.M. Ramos, Be-CoDiS: A mathematical model to predict the risk of human diseases spread between countries-validation and application to the 2014-2015 ebola virus disease epidemic, Bull. Math. Biol. 77 (2015), pp. 1668-1704. doi: 10.1007/s11538-015-0100-x. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1339.92085
[20] J.P. LaSalle, The Stability of Dynamical Systems, SIAM, Philadelphia, PA, 1976. [Crossref], [Google Scholar] · Zbl 0364.93002
[21] J. Legrand, R.F. Grais, P.Y. Boelle, A.J. Valleron, and A. Flahault, Understanding the dynamics of Ebola epidemics, Epidemiol. Infect. 135 (2007), pp. 610-621. doi: 10.1017/S0950268806007217[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[22] P.E. Lekone and B.F. Finkenstädt, Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study, Biometrics 62 (2006), pp. 1170-1177. doi: 10.1111/j.1541-0420.2006.00609.x[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1114.62120
[23] E.M. Leroy, P. Rouquet,P. Formenty, S. Souquière, A. Kilbourne, J.-M. Froment, M. Bermejo, S. Smit, W. Karesh, R. Swanepoel, S.R. Zaki, and P.E. Rollin, Multiple Ebola virus transmission events and rapid decline of central African wildlife, Science 303 (5656) (2004), pp. 387-390. doi: 10.1126/science.1092528[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[24] E.M. Leroy, B. Kumulungui, X. Pourrut, P. Rouquet, A. Hassanin, P. Yaba, A. Délicat, J.T. Paweska, J.-P. Gonzalez, and R. Swanepoel, Fruit bats as reservoirs of Ebola virus, Nature 438 (2005), pp. 575-576. doi: 10.1038/438575a[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[25] J.M.-S. Lubuma and K.C. Patidar, Non-standard methods for singularly perturbed problems possessing oscillatory/layer solutions, Appl. Math. Comput. 187(2) (2007), pp. 1147-1160. doi: 10.1016/j.amc.2006.09.011[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1128.65060
[26] R.E. Mickens, Nonstandard Finite Difference Models of Differential Equations, World Scientific, Singapore, 1994. [Google Scholar] · Zbl 0810.65083
[27] R.E. Mickens, Applications of Nonstandard Finite Difference Schemes, World Scientific, Singapore, 2000. [Crossref], [Google Scholar] · Zbl 0989.65101
[28] R.E. Mickens, Nonstandard finite difference schemes for differential equations, J. Diff. Equ. Appl. 8 (2002), pp. 823-847. doi: 10.1080/1023619021000000807[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1010.65032
[29] R.E. Mickens, Advances in the Applications of Nonstandard Finite Difference Schemes, World Scientific, Singapore, 2005. [Crossref], [Google Scholar] · Zbl 1079.65005
[30] D. Ndanguza, J.M. Tchuenche, and H. Haario, Statistical data analysis of the 1995 Ebola outbreak in the Democratic Republic of Congo, Afrika Mat. 24 (2013), pp. 55-68. doi: 10.1007/s13370-011-0039-5[Crossref], [Google Scholar] · Zbl 1271.62264
[31] T.J. Piercy, S.J. Smither, J.A. Steward, L. Eastaugh, and M.S. Lever. The survival of filoviruses in liquids, on solid substrates and in a dynamic aerosol, J. Appl. Microbiol. 109(5) (2010), pp. 1531-1539. [PubMed], [Web of Science ®], [Google Scholar]
[32] A. Rachah and D.F.M. Torres, Mathematical modelling, simulation, and optimal control of the 2014 Ebola outbreak in West Africa, Discret. Dyn. Nat. Soc. 0 (2015), p. 9. Article ID 842792, doi: 10.1155/2015/842792. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 1418.92188
[33] L.W. Roeger, Exact difference schemes, in A. B. Gumel Mathematics of Continuous and Discrete Dynamical Systems, Contemp. Math., Vol. 618, Amer. Math. Soc., Providence, RI, 2014, pp. 147-161. [Google Scholar] · Zbl 1330.65119
[34] H.L. Smith, Monotone Dynamical Systems, an Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys and Monographs, Vol. 41, AMS, Providence, Rhode Island, 1995. [Google Scholar] · Zbl 0821.34003
[35] S. Towers, O. Patterson-Lomba, and C. Castillo-Chavez, Temporal variations in the effective reproduction number of the 2014 West Africa Ebola outbreak, PLOS Curr. Outbreaks (2014), September 18. [Crossref], [PubMed], [Google Scholar]
[36] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), pp. 29-48. doi: 10.1016/S0025-5564(02)00108-6[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1015.92036
[37] X.-S. Wang and L. Zhong, Ebola outbreak in West Africa: Real-time estimation and multiple-wave prediction, Math. Biosci. Eng. 12(5) (2015), doi: 10.3934/mbe.2015.12.1055. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 1354.92094
[38] D. Youkee, C.S. Brown, P. Lilburn, N. Shetty, T. Brooks, A. Simpson, N. Bentley, M. Lado, T.B. Kamara, N.F. Walker, and O. Johnson. Assessment of environmental contamination and environmental decontamination practices within an ebola holding unit, Freetown, Sierra Leone, PLOS ONE (2015), December 1, doi: 10.137/journal.pone.0145167. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.